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Abstract

Adaptive AR models are used to fit actual recorded vibration
data taken from the tailstock of a lathe while cutting a slender
workpiece, The parameters of autoregressive (AR) model and crit-
ical value for chatter detection are determined on-line, The pro-
posed method can be used to expedite the “fo‘recasting controi”
and prevention of chatter,

introduction

Several attempts have been made in the past to design an active
machine tool chatter controller which can suppress chatter during
machining process (1). Implementation of the Dynamic Data System
(DDS) €23 approach has already shown that the dynamics of the
machining process can be identified under actual working conditions
(8, 4]. Using this approach, a scheme for computer control of machin-
ing chatter based on the criterion of vibration signal range has been
proposed (5 3.

The aim of this paper is to first introduce an on-line adaptive
modeling technique which can be used to fit a time — varying autore-
gressive (AR) model of machining chatter, and then to employ it for
predicting the occurrence of severe chatter.

Segmented AR Model of Chatter
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Since the chatter process is a nonstationary one, the usual method
of determining its characteristics divides the whole record into short
segments so that within each interval the data may be considered
“piecewise stationary” . After fitting each segment with a time-
invariant AR model, 7. e.,

A= Xpey + P o¥pog + 000 F Pu¥ion + 1)
one thus obtains a series of models which may be combined to re-
present a nonstationary process. The ¢/s in Eq. (1) are autoregressive
parameters and a; are residuals.

In this approach, the length of each segment should be as short
as possible with the requirement that enough data would still be a-
vailable for modeling. Besides this, there are advantages of having the
order, n, of Eq.(1) as small as possible with the requirement that the
resulting model still provides enough information for identifying the
main features of the chattering. In order to make a choice of order
7 in advance, segmented AR models were fitted to different sets of
acceleration data which were taken from the tailstock of a lathe
while cutting a long slender workpiece. The data points in Fig. 1b
and 1c are samples of acceleration signal representing the different
levels of chatter. They were recorded while thé turning tool was
cutting at different positions along the workpiece, say A and B, (Fig.

la) respectively. Since the most interesting frequency is the work-
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Fig. 1 Chatter signal plot. Sampling interval is 2 msec

piece’ s natural frequency, approximately 135 Hz in this case, for our

sampling interval of 0,002 sec there are about 4 points per period.
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The length of segment was chosen to be 20 samples long which di-
vided the 1536 point nonstationarydata into 76 piece— wise stationary
sections. By using the least—square method (LSM) each segment was
fitted to an AR model. Akaike’s Informaiion Theoretic Criterion
(AIC) was used to check the adequacy of the model. Figure 2 shows
the AIC for order n from 1 to 20. According to the models fitted to
the severe chatter the result indicates that AR(6) model is quite
adequate. This is also true for the case of no chatter and mild chat-
ter.
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Fig. 2 Using AIC as criterion to check
the adequacy of AR(n) model,
n=1to 20
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Adaptive AR Model of Chatter

The algorithm of adaptive modeling is based on the method of
steepest descent. Let @(k) represent the vectof of AR parameters

at any time k, where '
D) =Ly (k) ypy (k) yoer by (k) I ' (2)
In seeking the midimum mean-square error by the method of steepest
descent, one begins with an initial guess as to where the minimum
point of E(g?), the expected value of ar’, may be. Here 4,2 can be
the square of the forward (prediction) error aj. (one~—sided algori-
thm) or the sum of squares of backward (predictién) error au as well

4

as forward error ay (a two- sided algorithm) where

n
G = Xp— 2 G xp_s k=n+1, n+2,.,N
=1
n
Qe = X~ 2 Py k=n+1, n+2,...,N (3)
i1=1

The latter two -sided algorithm is
ai = afy + af, (4>

The updated vector of AR parameters is obtajned from
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Bk+1)=D%k) -9V E(a?) (5)
where VE(a?) is the gradient of the expected error—squared func-
tion Withirespeét to @ (k). The second term of Fqg. (5) makes a change
in the present vector @(k) in the direction of the gradient vector
V E(ay*). The positive value of 7 scales the amount of readjustment
of the parameters in one time step.

Since the true gradient is seldom available in practice, it is re-
placed by the gradient of a single time sample of the squared errors
¥V (¢*) which can be shown to be an unbiased estimate of VE(g,%).

Differentiating Eq. (4) with respect to ®(k) gives o

Via®) = =2 {apl %y %D+ @l Xny 1 Xpny g% 07 } (6)
The iterative correction of the parameters are now described by

Ok+1)=0 k) -V (a?)

=@ kY +ilap Xk~ +au Xk-n+1)) 7))
where
=21 | (8)
X(k=-1) =Cx,_ (X g X )T (9)
X =n+1) = Uy  Dpny g oo X7 (10)

The calculations required per time step for both adaption and error
computation . is a total of 2(2n+1) multiplcations and additions. (As
for a one-sided algorithm the toltal number is 2n+1 multiplications
and additions.

In addition to estimating the order n, the choice of adaptive coef-
ficient u is an acute problem in iterative calculations.

If u is chosen very small, the adjustment will take place very
slowly. I pu is chosen too Ilarge, the adjustment will overshoot the
minimum several times before @ finally settles toitsdesired value. The
mild chatter data were used to determine the constraint on #. By
using trial and error, in the case of V., (%) =1, values of # in the range
0. 01—0.05 are shown to provide excellent results for chatter model-
ing.

Since u is inversely proportional to the power of the data sequence,
Zx;%, it is necessary to vary the value of g because of nonstationary
vibration. This adjustment will meet the needs of convergency for
iterative algorithm. In our chatter example, where the order n is six,
u is taken initially to be 0,05, It is recommended to check the prod-
uct
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c=ﬂ( :S x}) (11)

i=k-30
after every 1000 new sampled data point come in. The upper and
lower bound of ¢ are set to be 0,08 and 0,02 by experience. If ¢ is
beyond this range, # will be changed to 0,05/Z%%, Figure 3 shows 4
with the growth of chatter for a 4096 data points interval which
indicates the necessity of periodic checks.
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In order to test the efficiency of the adaptive approach to on-line
modeling, the real data taken from mild chatter and severe chatter
were artificially linked at k=1000 to form a whole piece of nonsta-
tionary process. Furthermore, all the initial values of ¢i's are set
to be zero at k=0. Fig.4 gives the results of ¢, ~ ¢, in adaptive fit-
ting. Note that there are sudden changes at k=0 and k=1000. These
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Fig, 4 Parameters of AR(6),

results show that the adaptive algorithm can track the changing
signal with rapid response.

A typical result obtained from simulation is shown in Fig. 5a.
Real data are also shown for comparison (See Fig. 5b). As the initial
values of parameters are all set to zero, the simulated records are
small in amplitude during the first 60 data points but become closer
to the real process thereafter. This response lag also indicates how

fast the adaptive fitting tracks the changes of the signal.
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Fig. 5 Comparing the simulation data with the real data.

Figures 6a, 6b, 6¢c are the spectra of adé.ptive AR(6) models fitted
after receiving the 20th, 280th and 1040th data point respectively.

[t should be noted that all the spectra in this paper are calculated
by the modified equation given by

S,‘(f,k)“—‘ ’ﬂ (12)

|1- 3 ¢h) exp(-21jiny
i=1
to simplify their calculations.
A Proposed Criterion for Chatter Detection
Although the autoregressive parameters of the time—varying AR
(6) models can be determined on - line, they cannot be used directly

as a criterion for chatter detection. What is needed is a comprehen-
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sive index which characterizes the leével of chatter in a sensitive way

and is also computaionally simple.

inated by

and when the frequency response of the system

It is well known that the dynamic performance of a lathe is dom-

the response of the spindle — workpiece — tailstock system,

reaches a certain

high level at the workpiece natural frequency f,, severe chatter vi-

~bration will result. The occurrence of chatter vibration is usually not
an abrupt phenomenon, but develops gradually with time. Figure 7
shows the spectrum growing up with the level of chatter. For this

reason, the occurrence of chatter can be forecast by detecting the

workpiece’s natural frequency.
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Fig. 7 Spectra with different level of chatter.
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Based on the results or the experiments and the analysis of the

fitted models, a narrow width and sharp peak grows up around f,
(in modified’ spectrum ) when chatter is tending to be severe. The

absolute value of the peak is not related to chatter signal amplitude
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/,_f“"f"
due to the use of the modxfxed spectrum ‘estimate as defined in Eq.

P

(12). To simplify the computation, the inverse power density

n
b =[1- 3 a0 exp-2miin | BNELY
i=1
n
is used. The value of E ¢ik) exp (= 2njif) with ¢,(k)=—1 can be
i=0

calcuated by a special simplified FFT algorithm. The number of
calculations necessary to compute the summation in Eq. (13) can be

greatly reduced, the precise number of computations ‘depends on the

order n. Figures 8a and 8b show the S:' at k=1060 and 1320 respectively.
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Fig. 8 S;'(f, k) at k=1060 and k=1320

A critical value of S¢' around f, is predetermined. Comparing

this critical value, P, with the local minimum given by

P=min(S (f, )Y fo= Af<f<fo+ Af (14)
the difference detween P, and P could be used as a predictor of se-
vere chatter. When P is larger than a critical value P, the machining
process is stable and there is no severe chatter expected. However,
whenever P<P, it indicates the likelihood of severe chatter and the
cutting conditions of spindle speed and/or feed rate should be changed
in advance to avoid the inevitable chattering.

The basic form of adaptive modeling and the P calculation is
presented schematically in Fig. 9. The computation for ¢’s and P are
performed periodically and the result of ¢/s in previous steps is
stored up in output memory as the initial values for the next step
computation (zeros can be used as initial values at the very begin-

ning).
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Conclusions

1,

€11

£2)

£33

The time—varying AR models for representing nonstationary
chatter can be determined by periodically updating the parameters
in a fime adapfive manner. An adaptive time-—varying AR (6)
model is sufficent for fitting the vibration data during the whole
chatter process.

The adaptive AR modeling technique is suitable for on - line
modeling. Since it requires only 26 multiplications and addi-
tions (if n=6 and use two—sided algorithm) for each update cycle,
the implementation of the on—line modeling within the interval
of several samples is possible. v

The critical local minimum of inverse power density P. is used
as an index of the level of chatter. The local minimum of inverse
power density P below this level is presumed to indicate the
likelihood of severe chatter.

Only minimal prior knowledge regarding the nature of the vibra-
tion is required. The workpiece natural frequency needs to be

identified in advance in order to search for the local minimum

P.
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