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Abstract

This paper gives some complementary pictures of the time domain ap-
proach and the fkrequency domaiﬁ approach in system identification, Two main
time domain methods are compared by a frequency domain criterion, Some
interesting properties of the time domain methods for estimating transfer
functions are given, An analytic solution of optimal input design for sys-

tem identification is discussed,

1. Introduction

By frequency domain methodsfor system identification, we mean
sine wave testing (frequency analysis), conventional spectral ana-
lysis, the maximum entropy method or simply using frequency do-
main expression to calculate things related to the identification proce-
dure. These methods are used to estimate frequency responses, pulse
responses, or transfer functions. By time domaipn methods for system
identification, we mean least square method, maximum likelihood
method, prediction error method or output error methods. Using
these methods, we can estimate the coefficients of the differential
equation, the difference equation or the state equation.

Historically, frequency domain methods seem to dominate the
theory and practice of system identification in control engineering
applications up to sixties. Since the end of the sixties, the interest
in time domain methods has increased. The Control literature on
identification is now apparently dominated by time domain methods.

However, frequency domain methods are still very useful in
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practical applications. Moreover, the transfer function plays a very

important role for understanding the properties of a linear sys-

tem. Even if we work with a parametric, time domain model, the

accuracy of the transfer function of that model will tell us how

successful certain applications involving the model will be. The in-

terplay between parametric model estimate and their frequency

domain properties is crucial in adaptive control area. Some com-.

plementary pictures of these two approaches have been given in
Ljung and Glover (1981). ‘

In this paper, we shall make some further discussion on the
complementary relationships of these two approaches. We compare two
main time domain methods, the prediction error method and the out-
put error method, by frequency domain criteria in Section 2. We
review some recent results on time domain methods for estimating
transfer functions by Ljung and Yuan (1985), in Section 3. Section
4 gives an analytic solution of the optimal input design problems.

Finally we give some conclusions in Section 5.

2. Comparision Between Output Error Method and Prediction Error
Method

Consider the following ~discrete time single~input-single-output
system ,
Cy(t)=G(0,q Hu@) +H(0,q" e : (2.1)
where u(t), y(t) are the input and the output at time t, respectively.
{e(1)} is a sequence of white noise. 0 is unknown parameter vector.
G(8,z71) is the transfer function of u(®) and y(1) and H(0,z7') the
transfer function of the stochastic disturbance, H(o)=1-
According to the model (2. 1), the prediction of y() is given
by (2.2)

g(t\9) =(1=-H 10,0y +H (0,47 )G0,q™ " )u(t) (2.2)
The prediction error ~ ‘
6(t,0)=y(1) ~ ¥ (t|0) (2.3)

For a system of type (2. 1), we consider a special case that
0= (% ). ecacr, seDCR

and p+r=s,

The true system is
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S: y(t) = Glag,q Du() +H(8,,q0"e®) (2.4)
The model set, in prediction Error Method, is discrbed by
M; y(t) = G(a,qg " u(t) + H(8,q4 " e(t) (2.5)

The prediction error (2.3) turns out to be
e(t,0) =H 1 (8,4 ) (y(@) = G(a,qg" " )u(t))
= H (8,47 )(G(ay ,q™ 1 )u(t) + H(8y,q" De(?) = Gla,q"Hu®))
Hence
Hy(q™")

me(t) (2,6)

e(t,0)=H (8,47 ")(Go(¢7") =G(a,g " Nu(t) +
where
0=( 5 ), Cota)=Clan,a™, Hota™)=HGo,a™ "

Introduce a scalar valued criterion of fit
et (t,0) ,
After N data have been collected, we can form the criterion function

1w
V(0= =2 e*(1,0) (2.7)
Ni=1

The prediction error estimate of 0 is obtained by minimizing Vw(6),
over §ED,. The minimizing element, denoted by é\N, will thus give
us the resulting estimate of the system; M(8),

It can be shown under quite general condition that the pre-
diction error estimate @N tends with probability one to the value ]
that minimzes

V) o lim EVy(0) = Ee?(t,0)

N-—»co

(2.8)

(See, Ljung (1978) ) where V(0) is called the limit criterion func-

tion, and

6 = arg min V(6) (2.9)
feDm
Similarly, in the output error method, the model set can be repre-
sented by
My g(®) =G(a,g Hu@) +v(t) (2,10)

where v(3) represents some stochastic disturbance of unspecifiedjchar-
acter. The output error is that

e (1,0) =g (1) = ya(t) (2,11)
where |

Yu(1) = G(a,q" u@) (2,12)
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The output error estimate of & is obtained by minimizing the

following criterion function
’ 1 v
Vla) = — 2 €1 (t,a) _ (2,13)
N i=1

The output error estimate, denoted by ay, tends with probability

~
one to ¢, where

;=arg min V/{(a) (2,14)
o
and
V/(a)=Ee, (t,0) (2,15)

For comparision, we consider 2 frequency domain criterion
w
[ 16 -G, 100 (2.16)

where G,(ei®) is the true system transfer Adunction, G(0,6®) repre-
sents the model set, Q(w) is a weighting function Q(w)>0, ¥o. The
best approximation of the true system in the frequency domain, is
obtained by minimizing the criterion function (2.16).‘ How do we
select the weighting function Q(@)? IF the true system belongs to
the model set M; SEM, then the optimal G(0,6?) = G, (¢'?) regardless
of Q) as Q(w)>0,%o and hence the integral (2,16) is greater
than or equal to zero. G(8,6i?) = G, (¢'?) the integral equals zero. If
S¢ M, the weighting function will determine the bias distribution,
where in the frequency band we require to have the best fit. A high
value of Q(») at certain frequencies indecates that we require‘that
the bias in G(0,6°) to be small at these frequencies.

For comparision between the prediction error method and the
output error method, we give the following definition.
Definition 2,1 If Fo(z7') is a known transfer function of a low-pass
filter, O(w)>0,and SEM. ' : '

Foarg min || P @) 16,e?) ~Go() |*Q@)0
n *

and

?:arg min Kﬂ | G(n,6'?) = Gy (ei?) | 20(0)dw

Y]

then the estimate G( ,7;,6‘“) is said to be more emphasized at the high

e T
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frequency band than G( 7,e'®) or simply say, 7 is more empha

sized at high frequency band than’;yl.

Theorem 2,1 If S¢MUM,, H (3,6"‘") is a low-pass filter transfer
function, where §T=( &\T, 3") in (2,9), then the limit prediction
error estimate@ is more emphasized at the high frequency band
than the output error ‘estimate a.
proof. In view of (2,6),(2.8)and (2,9)

( ¢ )-_-arg min { J' |E-1(8,619) || G(ar,ei®)
o] a,0 -

Ho (ei?)

"Go(ffm)lngu(@)dw‘l'l J'ﬁ W(lw }

-7

Hence

3=arg min J’: 1H™1¢( 8,e"‘")lzlG(a,e"“’)—~G0(e"°’)lzq5u(co)dco (2,17)
o T

From (2,11),
€, (1,0)=y(t) - G(a,q" " Yu(t)
= (G (¢™1) = Gla,g"* Nu@) +H (g™ )e(t) (2,18)
According to (2,14), (2,15 ) and ( 2,18 ) |

w=arg min { [7 166,69 -G, 2h@rdo  (2,10)
o i ’ ' :

Compare (2,19) with (2.17) and use the definition 2.1,  thus
completes the proof of the theorem. ,

Remark This theorem means that if the true system does not
belong to the model set, we use the prediction error estimate or
the output error estimate in the recursive version, then for large
enough N (the number of data), by using the prediction error
method, the resulting transfer function has smaller bias at the high
frequency band than the other. ‘

Wahlberg (1983 ) discussed the similar problem, but he consid-

ered the limit case only.

8. Properties of Time Domain Identification for Estimating Trans-
fer Function '

To estimate a transfer function is basically a non-parametric
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problem, One common approach is the frequency domain one, the
cross-spectrum of the input and the output is estimated, as well as
the input spectrum and a transfer function estimate is formed as
their ratio.

In this section, we consider a discrete time stochastic linear sys-
tem, generally, it can be expressed as

y(1) =Gy (g™ Hu®) +v() (3.1)

where u(3) and y(¢) are respectively its input and output, v(¢) is the
stochastic disturbance. v(1) is a zero mean stationary process. Expdnd
Go(g™h)

Go(q'l)=k§.‘;l gea " (3.2)
The complex-valued function
G(e'®) = i ghe ity r<o<g (3.3)
=1

is the transfer function for model (3,1)and (38.2).
In conventional spectral analysis, the transfer function estimate

is given by the following expressions
G (6°) =4 lin)d, ™ (), (3.4)

here @y (in) and $u(w) are their smoothed spectral estimates,

_ . 1 u e kﬁ ko
¢y.’,(1(0)—— o kﬂE'MW( Tyu( €

— )_ _}_- M k)/\ k) "ihfo'
du(w) = ZJKIZMW( r.(k)e

fema =

where
N

Sy (k) ur)

3
=1

~ 1
() ==
7y (K) N

T == S u(t+ Bac
7u( )—ﬁ E}I u(t+ku(t)

A comprehensive discussion can be found in Jenkins and Watts
(1968). It is well known that the variance of the spectral estimate
does not decrease as N—>oo, one may use the window function w(k)
to decrease it. The useful window functions include Bartlett window,
Parzen window etc. The accuracy of this method depends on the lag

of window and the character of the input signals,
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In Ljung and Yuan (1985), the following method is given for

estimating the transfer functions, Consider the model set

M y(8) = Gu(qg™ Yut) +v(t) (3.5)
where
) .
Gi(q™") = lgl g " , (3.,6)

Using the output error method to estimate the parameter § in the
model (3,5) and (3,6), we obtain the time domain estimate of
the transfer function

~ d ~
Gi( Oy, e°) = 3 g7k —r<o<im (3.7)
k=1
where
01‘:(8'1’“'5&!) (3.8)
Denote that
Giowy(e1®) = Gy (U e'®) (3.9)

here d(N) denotes the model order used when N data have been col-
lected. The transfer function is parametrized as a black box and no
given order is chosen a priori. This means that the model orders
may increase to infinity when the number of observed data tends to
infinity, i, e. d(N)-»co0, as N-»co. The parameters are only vehicles
for arriving at a transfer function estimate. Under certain regularity
conditions, essentially independent of model structure and noise

model, the basic results are given as the following,

(1) G,\(,(N)(e"‘“)——»GO(e"“’) as N—»co, with probability one. (3,10)

N o .
(2) 1555} covGy n, (i) > (0) /(@) as N-»co (3.,11)
f N . 2 )
(3) TN (Gacny(€5°) = EGyn (68°))E As N(0,¢,(0)/Pu(0)),
(2,12)

where ¢,(w) and ¢, (w) are the disturbance and input spectral den-
sites, respectively. These results are useful for optimal input design
and other design problems, .

Remark The problem of estimating the transfer function of a
multivariable, linear, stochastic system has been considered in Yuan
and Ljung (1984 ). Similar results have been obtained where Go(g™!)
is the pxm polynomigl matrix and (N/Jd(N)) cové’\-lmv) (61?)—> D1 (w)
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B I | G(§N'6f“)~Go(€"“’)le(w)dw
-
" 1 9G A A 9G | r
zEJ A “‘“) (Ov=04) C Oy—0)T { —— Q (w)dw
: _n( 90:90 ) 0 N 0 (60 0'—‘-60) .
A A~ ] _é—G_ T
= traCe% E(QN—-O(J)(QN—@O)T J—n<’~a—§-’ _ )
o 10=6,
oG
ol Q(w)dw }
( 96 | . 0, ) |
where the bar ¢~ denotes conjugate and “T” the transponse.
Therefore
V(Q-')u(w))ztrace PN'W : ( 4.3 )

Here Py is the covariance matrix of (ZJ\N, and W js a weighting ma-

trix derived from Q(w), G, and the mode] parametrization, i, e.

Minimization of ( 4,3 ) under the constraint ( 4,2c ) has been studied,
. g. in the aforementioned references. Some structural results are
known, such as how many different sinusoids are required to -reach
the minimum, etc. The actual calculation of the optimgl spectruym
is however numerjcally complicated,

In this section, we consider the following criterion

r E| é!\N(t?”") -G (ei®) |20(w)dw (4,5)

T LTy

Under certain regularity conditions, from (3,10) and (3,11), we
obtain

- r $o(©) Ow)dw

= ¢u(w)
If ¢(w)=1, then

_ (" [Ho ()] *Q(w)
]N I"” ¢u(w)

The optimal jnput design problem will be to obtajn

do (4,6)

min J(¢.(w))

$u(©) (4,733

with the constraint
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[[ uordo=1 (4,7b)

This is a typical constrained varjation problem. In view of Gelf-
and and Fomin (1963), the optimal input spectral density must

satisfy the following equation

— e 2
|Ho(ei®)| Q(w)”:

0 (4,8)
(Pps(w)) ‘
where ) is a constant,
From (4,8), we obtain
¢ (w) = const » | (Ho(e'*) VO (o) o (4,9)

where the %const” is determined by (4,7b) ,i,e.
[" srdo=1. ‘ (4.10)

An appealing aspect of such a result is that the optimal input
is easy to determine It depends on the chosen weighting function
O(w) in a very mnatural way. For an output error method we have
H(8,ei°)=1. Hence the optimal input is independent of the system in
that case. A systematic discussion on ‘this topic can be found in
Yuan and Ljung (1985) - ' |

5. Conclusion

Some prospective pictures on the complementary relations have
been shown in this paper. We believe that the gap between the time
domain approach and the frequency domain approach will be filled in
the future. A good system identification package should include ex-
amples of both techniques. This package will facilitate both theoret-
itical researchs and practical applications. '
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