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Abstract

Owing to the large computational load and the time delay not included
in the system model, the stochastic optimal control has not been applied to
the process control success{ully, even though it has many advantages. From
a new point of view, a discrete stochastic optimal control algorithm is pre-
sented in the paper, where the input-output plant model with time delay is
used and solution of Riccati equation and spectral factorization is not

required. The algorithm requires less computational load, therefore, it is

easy to implement with microcomputer. The amnalysis of some closed-loop

properties is given in the paper.

1. Introduction

The design of optimal controllers for the stochastic LQG problem
is well established, using frequency and time domain theory (1,2,3),
The treatment in the frequency — domain wusing the Wiener—~Newton
approach requires a time consuming spectral factorization, The
algorithms wusing time—domain theorr heory rest on the so-called
certainty equivalence hypothesis and the solution of the Riccati equation
is necessary, At present situation, LQG controllers have been rarely
applied in industrial control, except in minimum variance and genera-
lized minimum variance forms which are based on only singlestage
cost function minimization, This may be due to the large computational
load of solving the Riccati equation and performing the spectral

factorization for LQG controllers
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Kuceral4] proposed a controller based on an infinite - tage cost
function derived totally in the polynomial domain, The major difficul-
ty with such a method is the computational requirements of solv‘ing a
spectral factization and two Diophantine equations, Astrom(5,6) has
discussed the use of LQG regulators, where the solution of a staedy
state Riccati equation and spectral factorization were required, The
work of Peterka(7), who employed a finite—inteval cost function in
deriving an optimal self - tunner, is also related to the LQG control-
lers, .

In this prper, the authers propose a new version of discrete sto-
chastic optimal control algorithm, The plant is assumed to be a discre-
te input—- output model and time delay is considered in the plant
model, because we can obtain the industrial plant’ s input - output
model easier than its staedy ~state model, and the plant. always pos-
sesses dead time property in process control as well,

The control strategy is designed to minimize the value of an N—
stage cost function, The optimal control algorithm here is easy to put
into effect in industrial process with microcomputer, as the solution

of the Riccati equation and spectral factorization are avoided,

2, Plant Modsel and Minimum Variance Prediction

The input—output model of a plant rﬁay be represented in discre-
te time as '

Az Dy (1) = 27k Bz~ u(t) + C(z"1)E() 1)
where y(1) is the measured variable at time t, u(1) the control signal,
A(z™Y), B(z™') and C(z™') are polynomials of the form

Az =14 qa,27! +yazz'2 ot g,z

Bzm')=b,+b 27t +b,z"t b 2"

Cz"y=14ciz7  +e,27 2+ o+ 027" ;
in the backward shift operator 27!, k is the integer time delay of the
plant and £(t) is an uncorrelated sequence of random variables with
zero mean; below the polynomial C(z~!') is assumed to unity, |

By using the equation ' .
1=A4E+27FF 2)
Astrom(1) obtained the result that the miniwum variance predictor

over k steps is given by

Y (t+k/1) = BEu(t) + Fy(t) (3)
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The minimum uariance control law was derived by minimizing

the criterion
J=E{y*(t+k)}

Therefore, minimum variance control is considered as one— stage cost
function stochastic optimal control,

In order to derive an N-—stage cost function control law, the
authers extend (2) to the following form(9]

1=AEy+ 27 NFy (N=0,1,2,"") 4

where polynomials Ey and Fy are of d'egrees N+k-1 and n-1, res-
pectively,

Using (1) and (4), the optimal predictor over N +k steps is given
oy 34kt /D) = BEgu(t + N) + Fay() (5)

8. Optimal Control Law Using Input- Output Approach

In space - state regulation it makes sense to express the criterion
in terms of varinace of space—state variables and control variable,
i. e.

N1

jl XN+—2'2(kux&+ w,RU,) g (6)

mlp—-\

For input—output approach, the criterion may. be to minimize the
variance of the output and control variable, therefore, we introduce

the loss functson
J = E{eyRey + ufQuy} 7

where R,Q are diagonal matrices of order N+1XxN+1, here, N+1 is
the stage of the cost function, ey and uy are N+1 vectors and are
defined by
en = Cw(t+ k), w(t vk + N =yt +k), -,y +k+ N)J"=W =Y  (8)
uy=(u(@),,ut + NI~ : (9)
where W is the setpoit viector,
Using (4) in (1) gives ’
y(t+k+N)—GVu(t+N)+FNy(t)+EN§(t+k+N) (10)
where Gy=BEy is a polynomial in 27!, it may be written as
Gr=gno tgniz~ '+ tgywe™V+ - tgnz”™’
=gng t gzt b +ganz ™V + Gz C11)

1

The G} is also a polynomial in z7' and of dimension 7—- N-1,
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Then, as N takes the value 0,1,2,-,N respectively, the output vector

Y may be written as

( Glu(t-1) + Foy(®) |

(ge0 0 - u(t) | 5 |
y=| &0 g u(t+1) }Jr Glu(t=1) +Fuy() | |
o 1 |
vo g1 v g | w(+ ND ;
gno & gVNJ Gﬂvu(iwl) +F1\f@/(t)j‘

Eq CEGE D
R £+ H)

=Gu+F + HE (12)
ENJ\E(t+k+N) |

where G is a matrix of degree N+1xN+1, H a polynomial matrix

in z7! and F and § are N+ 1 vectors, Substituting (12) into (7) yields

J=E{(W-Gu-F~-HE)R(W -Gu—-F~HE) +u Qu} (13)
Because &t +k),-, E(t+k+N) are asequence of independent
random variables and are independent of vector v and y(t), y(-1),

.., then (13) can be written as
J=E{(W-F) R(W~F)+2(F-W) RGu+u G°RGu +u Qu+& H RHE}

The optimal controller is chosen to minimize the above cost function
J, This can be done by differentiating J to u and the optimal control

*

u* is given by

u*=(G RG+0)"'G R(W - F) (14)

Although the optimal control vector u* is obtained here, it is
worth mentioning that this control law must be used in the receding-

horizon sense to ensure that the same control law applied for all time

€81,
Define
[51 Sy v Sy ;,, o
(GRG+R)IGR=1 X X = x| [p (15)
\>< X e X "i
where . D=|G'RG+0Q| : c(16)

Then solving for first control signal u(t) yields
a* () = (5, SyeSya ) (W =F)/D 1T

Notice that



38 CONTROL THEORY AND APPLICATIONS Vol,6

{qu~1>+ w@)]

F=
fu(t=1) + Fy(t) !
hence
/ N
u¥(t) = ( }A_f,‘aﬁwu(w k+1) - ( %Fis;+l)y(l)~( > Gl )u(tml) }/D
i=0 ’ i=0

=0

(18)

It is convenient to rewrite (18) as

u(t) = [é}OS;HW(Hk*") - ( ‘_%gF;s;u )Z/(D}/

[D + ( ;0 G’s. v\ )z‘lJ
(19)

It is thus obvious that the optimal controller takes the {form

of a feedback control law, The analysis of closed — loop properties can

be made below,

4. Closed - Loop Properties

The block diagram of the feedback system can be drawn as Fig,1
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Fig.,1 The block —~diagram of the closed-loop system

according to (19) and (1), It can be seen that the indivadual elements
of this block—diagram are all causal,

From Fig,1, the system output y(¢) is given by

N N
25i+11'V<t“*’k+i)““( 2 Fisiy )y(t)
<o

i=0

1
t = ok e
y(t) =z +A§U) €20)

A° N
+( 2 G¢5:+1 )2'"1

i=0
Using equation (4) and (11), we can obtain the closed-loop trans-

fer function as follows



Stochastic Optimal Control Using Tnput- Quiput

No.,1 Model with Time Delay 39

N N
B[ s wek D) }+[D4-(§}G@H1)Z'*}ﬂﬂ
“i=0 . i=o J
y(t) = - 7 (21)
N X s N
(_ EOS"HZ' )B+ (D~ (\ DS Si+1gii>]A

j=0 j=0

(3

This is not a cancellation law and the closed —loop characteristic
equation is
N vy I
( ;gos“lz“ )B + [D“' ,-;E, igosing:‘;)]/l:() (22)
when analyzingkthe control system, it is important to calculate
the stead-state value of the output of the system, It is usually desired
that stead—state error dose not exist between the setpoint and the
output in industrial control applications,
To calculate the stead ~state value of the output, consider the
case
wt+k+1) =w() (1=0,1,2,,N)
and

E=0

using the final - value theorem, the stead-state output is then given by

B(D ( _%Sm )w(OO)
plee) = N ‘ ) (23)
( EOS;H )B(l) + (D~ (:]0 'Jgosn lg;;’.)]A(l)

J i

It is clear that the condition existing no stead -state error is
determined by
N
D=3 3 Si+18i; (24)
=0 i=0 '
Now, let’s discuss what the equation (24) means, It is known
that from Section 3, g;; is determined by the parameters of the system
model and s; is dependent on G and matrices R, Q, D is calculated
according to (16), Therefore, equation (24) means that ome of the
2(N +1) elements of R and Q can not be selected arbitarily, and should
be determined by (24), In practice, the elements of the matrices R,
QO can be selected in advance and then (24) is used to calculate D,

This is-equivalent to determine one of the matrices R or O by (24),
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5. Simulation Results

Previous section have formulated a discrete optimal control
algorithm using input-output approach, Some closed ~ loop properties
have been given and further properties of this algorithm will be
illustrated in simulation, Below, the weighting matrices in the
criterion are unity malrices, '

The simulated plant had the second — order discrete time model

(1-1.48927" + 10,5488z 2)y(t) = 27 *(0,139+0,10762" " Hu(t)
where the time delay k is 4, In designing the LQG controllers, it is
assumed that the time delay is 2 instead of the actual value 4, Fig,

2(a) and (b) show the cases that the cost'function stage N+1 is 4
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Fig.2(a) The case of N+1=4 Fig,2(b) The case of N+1=9
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Fig.2(c) The case of N+1=1
and 9 respectively, It can be seen from the figures that as the stage
of the cost function becomes larger, the properties of the closed

loop can be improved, The resulting performance with minimum
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variance control (i, e, N+1=1) is shown in Fig, 2(c),

6. Conclusions

After extending the Diophantine equation to the general case, a
aew version of LQG control algorithm is presented, Because we can
obtain the industrial plant’s input- output model easier than its
steady - state model, and the industrial plant always posesses dead
time property in process control as well, So, the input-output model
with dead time is used above, The main advantage of the algorithm
here is that the solution of the Riccati equation or spectral
factorization is not required, which most of previous LQG controllers
always involved, Therefore, the computational load is lightened and
the storage and speed requirements decrease, and this algorithm is

easy to apply to the indusrial process,
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