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Abstract: In this paper,we obtain the maximum principle in optimal control problems for a
class of deterministic forward and backward system applying Ekeland’s variational principle. We

also prove that the maximum condition not-only is necessary but also is sufficient for a linear

case.
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1 Statement of the Problem and Our Main Result
In this paper,we consider the following optimal control problem. Minmizing a cost
function
S@()) = h(x(T)) + Y(y(0)) 1)
over %/ ., subject to
2= fx,v),
x2(0) = 25, G (xz(T)) =0,
y=g(z,y,v),
y(T) = yr, G,(y(0)) =0.
where | f: R"XR'—>R",
g: R"XR*"XR—R",
Gy: R"—=Rn, n <n,
G,: R*"—=>R™, m, <m,
h: R"—R', v: R"-R.
and %7, is the set of admissable controls defined by
U= {v(+) € L7(0,T):v(t) € U,a.e. ¢t € [0,7T]).
U is a closed subset of R*,

(2

There are some works relevant to this problem. Pontryagin'® discussed an optimal
control problem with variable endpoint constraints applying a convex cone method. In our

paper , we obtain the maximum principle applying a spike variation and Ekeland’s variational
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Eo'

:"ﬂciple,the transversality conditions we obtain are described more precisely.
d

For the above problem,we give our assumptions

H1) f»g+h,7,G,,and G, are continuous with respect to x1y505t5f,85h,7,G,,and G,
. continuously differentiable with respect to x,y.

H2) f.,g.and g, are bounded.

We have the following results

Theorem 1  Suppose H1) and H2) hold.Let (u(+),z(+),y(+)) be an optimal
jution to our problem (1) and (2), (#(+),q(*)) be the corresponding solution of the fol-
wing adjoint equation

[ — p = fi(z,u)p + gl (x,y,u)q,
p(I) =— (h; (x(T))ho + G (x (TR,

. (3)
—q=g;{z,y,u)q,
L (](O) = V; (y(O))ho + Gz*y(y(o))hz,
jen ,the following maximum condition holds
Hx@),y@),u@),p(),qt),t) :
= rilea(fH(x(t),y(t),v,p(t),q(t),t) a.e. te&[0,1T]. €]

here, H(x,y,v,p,q,t) &lp,f(x,v)) +{g,g(x,y,v)) is the corresponding Hamiltonian
2

wction, by, €R',h; € R and h, € R™ are constant vectors with Z Hh|2=1.
i=0

This paper is organized as follows. We give the proof of Theorem 1 in Section 2. In
:tion 3,we study the optimal control problem for another type of forward and backward
stem and the corresponding maximum principle is given. We give a sufficient result for a

ear system in the last section..

The Proof of Theorem 1
For the optimal control u( + ), we define a spike control
v, T<{t<r+e,
u'(t) = { .
o \u(), otherwise,
ere, v € U,r € [0,T), € > 0is sufficiently small.
Let’s consider the following system:
= f(z,v), 1(0) = Zg»
{ y=y(x,y,0), g = yr.
+ denote the solution of (5) as (x(#,v),y(t,v)) and (£°(+),y'(*)) A (x(t,u®),y(t,

(%)

). For convenience,we use the following notation in this paper;
f@) = flz,u), fu)=f(z,u),
g = glx,y,u’), gu) = glx,y,u),etc.
introduce the variational equation as follows ’

0z = fo(w)éx + fu*) — fw), $8z(0) =0,
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Vo, 1o
8y = g.(w)dx + g,y + gu*) — gw), Sy(T) =0
and have the following result. (8
Lemma 1 Suppose H1) and H2) hold. For 8z and 8y, we have the following ©Stimg
tions: " .
() = x(@) + 6z(@) +o(e), Yte [0,1], &
Y@ =y@) + 0y@®) + o), Vi€ [0,T]. @

Proof we first prove (7). From (5) and (6),we have
z(@) — x2() — dx(t)

= f‘ L u) — flax,u®) — fo(x,u)dx]ds

= J;U:(ff(“ + At — 2),u)dAat — z) — f;<x,u)ax]ds.

Then, it follows

lz*() — z(2) — 8z(2)|

<[ 1wlla = = — oelds + [ e — 1.

with |

A= f:(fx(x + A — 2),u) — f.(x,u))dA,
Applying Gronwall’s inequality to the above relation, it yields that

l2°) — 2(8) — 82(8) | < CH:A‘(::‘ — 2)ds| = o), € [0,7],

Then (7) is obtained. We can prove (8) similarly.

Now we give the proof of Theorem 1.

Proof of Theorem 1 We define a metric in 2¢,,. For v,(+),v,(+) € D s let

d(v,(*).v,(+)) A mes{t € [0,7] : v,(t) Z v,()},

where,mes{ ¢ } is the Lebesgue’s measure. With this metric, (% g»d (=, +)) is a complete
metric spacef?,

For any v(+) € %/.;, we define the following cost function of system (5).

F()) ={|G@T;v)|*+ | G,(y(0;0)) | ?

+ (T390 + Y(3(0;0)) — h(z(T)) — ¥(3(0)) + 7). (¥
It can be proved that F,:2¢,, — R is continuous ,and
F.(w(+)) =0, F(u(:))=c¢
Obviously, Fu())< inf F,(v(+)) + e,
wDEX,,

Then from Ekeland’s variational principle,there exists #.(+) € @/,;d such that
D Fo((+)) <F.(u(+)) =¢,
i) d@()uN< Ve, (10)
i) F.(w())ZF.(t(+)) — Ved@w(),u(+)), Y w()E€ 2,
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. make a variational control of «.(+),
() = Ty r<t§t+p.,
u.(t), otherwise,
gwhere’ v € U,r € p[0,T),p > 0 is sufficiently small. Then «?(+) € 2/.,, and
duf(),u.(+)) < p.
jt follows from (10) iii) that
Fout($) — Fou () + Vep=o0. a1
For notational simplification,we denote
x2() & x(@ul), z.() & x(t;u.).
Let (6z.,8y,) be the solution of
8z = fo(zesuddze + f(xesul) — flzesue),
0z.(0) = 0,
0 = g:(ZerYertt)0x + 8,(xesVertt)0ye + 8(Zeryertt) — g(xesVertte) s
0y .(T) = 0.
From Lemma 1,we have
2£(t) = z(t) + 0z.(t) + o(p),
y2(@) = y.@) + Oy.(@) + o(p).
Thus from (9) and the above relation,it can be derived that
Fiu¢(+)) — Fi(u.(+))
=2(G (2. (T))0x(T) ,G,(x.(T))) + 2{Gy, (.(0))3¥.(0) ,G,(x.(0))>
+ 2¢h. (2 (T))0x(T) + V,(3:(0))8¥:.(0) s A (x.(T)) + V(y.(0))
— h(x(T)) — Y(x(0)) + &) -+ o(p). a2
Since ‘
wf(e) —>uls), p—>0,
F(uf()) > F.(u.(*)), p—0,
ind
F.(u.(+)) >0,
rom (11) and (12),it follows that '
(G x (THR, 4+ b} (x (TR, 02.(T))
+ (G4, (3.(0)hs + V5 (3.(0))hs,85.(0)) + 0(p) + p V€ =0, (13

with
e — Az, (T)) + VY(3:(0)) — h(x(T)) — Y(y(0)) + ¢
’ F.(u.(+)) ’
e Gi(x(T))
<h1 - I"e(ut(')) ’
Bt — G:(5.(0))
2T Fo(u ()’
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Let (#.,q¢.) be the soluticn of '

— pe = [ (zesud pe + g2 (Tor yertt)qe,
PT) =— (Gl (THhE + bl (2 (TIIhS),
— qe = g3 (Ter Yerthe)qe
q.(0) = G5, (y.(0)R; + V; (3.(0))AS.

Then from (13),we have

T
J [:H(xn_')’z,uuPHQeyt) - H(xnynufspsa(]wt)]dt -+ O(P) + 14 /? ; 0
0 )

(14)
Where, H(x,y’vqj)9q’t) é (P’f(x’v)> + <q,g(x9y?'v)>.
Multipling by % on both sides of (14) and letting o — 0, it follows that
H(z(8),3:€8) uc(t), pe(8) q.(8) 52)
— H(@e (), 3.8 50, p.(#),q:(1) ,6) + &€ 20, ae. t€[0,T]. (15)
2
Since Z | 2 I 2 = 1,there exists a convergent subsequence of {A¢} such that
i=0
hi“’h,‘, €_>0, i=091’2’
2
i=0
From (10) ii),it yields
u (o) > u(e), e—>0,
so we have | ~
(z(®),5.@8)) = (@) ,y(@®)), e—>0, Vi€ [0,T],
(Be(8)5q:(8) = (p()yq@)), e—>0, Yere [0,T],
where (p(+),g(+)) is the solution of equation (3).
Let e— 0in (15),then we have
H(z(),y@®),u(®),p),q@),t)
—H(x(t),y(t)»vsp(t),Q(t),t)20, VvelU, ae t€ [037']-
The proof is complete.
3 Optimal Control for Another Forward and Backward System
We consider another forward and backward system
&= flz,y,v),
x(0) = zo, G (x(T)) =0, (16)

y=g(y,v),
y(T') = yr, G,(y(0)) =0,
Our optimal control problem is to minimize the cost function (1) over @/,,,where f:R" X
R” X R* > R",g:R"” X R* - R", o
Under the assumptions H1) and H3),we can prove the following result similarlys

where
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d3) fu»f,and g, are bounded.
. rheorem 2 Suppose H1) and H3) hold.Let («(+),x(+),y(+)) be an optimal
qu‘on to our optimal control problem (16) and (1), (p(+),q(+)) be the corresponding
é 1uﬂon of the following adjoint equation:
1 [.-p f1(zyy,p,
| p(T) =— (A} (x(T)hy + G (xz (TR,
1 —q=F; (@ y,wp + g (y,u)9,
q(0) = V3 (y(0)ho + G2, (y(0))h,.
Then,'fhe following maximum condition holds
H(x () sy ,u(t), p(@),q@),2)
= T:{;(H(x(t)yy(t),v,p(t),q(t),t) ae. t€ 0,17,

where H(x,5,v,p,q5t) ALp,flz,y,v)) + (g,g(y,v)) is the corresponding Hamiltonian
runction, kg € R,k € R™ and h, € R™ are constant vectors with 22) |21l 2=1.
i=0

4 Sufficiency of the maximum condition for a linear case

We consider a linear forward and backward system

2 =AW=z + B@#,v), z(0) =z,
{ y=C@Wz+ DWWy + E¢tv), yT) =y
Dur optimal control problem is to minimize
S(+)) =c"z(T) +d* y(0), (18)

wer 2 .. Where, A(2) € R"x",B(t,v) € R",C(#) € R™",D(#) € R™",E(t,v) €E R",c €
R"and d € R”.

Suppose that A,B,C,D and E are continuous with respect to #,v. We also assume that
7 is a bounded closed subset of R*.

For this problem,the maximum condition (4) not only is necessary but also is suffi-

an

ient. We have the following sufficiency result:
Theorem 3 Let (2(+),y(+)) be the trajectory of system (17) corresponding to #(+)
€ 2 0ys (p(+)5q(+)) be the solution of the following adjoint equation
{ —p=A"Wp+C (g, pT)=—
‘ —g=D®"g, ¢0)=d.
T () ,z(+),y()sp(+),q(+)) satisfies the maximum condition (4) ,then (u(+),x(+),

a9

y(+)) is an optimal solution to problem (17) and (18).
Where the Hamiltonian function is
H(z,y,0,05q5t) & (p, AWz + B,v)) + (g,c®x + DBy + E(t,v)).
Proof For any v(+) € % ,let x(+) & z(+,v) — x(,u),0y(*) A y(o,v) — y(s,
¢),then (8z,8y) admits
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0z = A@)x + (B(t,v) — B(t,u)), 06z(0) =0,
8y = C(@)ox + D)8y + (E(t,v) — E(t,u)), &y(T) = 0.

From the above equation and (19),one can check that
T
¢80T + d*8y(0) = [H @),y (), p(1),q0,0)

— Hx@®),y@),vt),p(&),q) ) ]de = 0.
It implies

S()) = Sw()).
Thus « () is optimal. The proof is complete.
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