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Abstract; In this paper,a new robot force control strategy based on neural network learn-
ing is proposed. The controller i is composed of two neural networks in cascade. One of them i is
used to learn the inverse dynamxcs of the robot,while the other one to learn to express the un-
known environment dynamics. With this method,the difficult environment modelling problems
can be avoided. To indicate the e{ficiency of this algorithm,the force control problem of a two-
link robot is engaged. Simulation results show that this straightforward method is very feasible.
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1 Contact Tasks and Virtual Internal Model

Today’s robots need to provide for more sophisticated motions. To meet these de-
mands, the control function required for the robots has become more sophisticated and ver-
satile. Force control is one of the most challenging problems in robot control,and there has
been a significant attention directed to compliant or force control tasks® in this decade.
These tasks can be identified as “interactive tasks”,defined as tasks where the manipulator
comes into contact with the environment and effects some changes,such as grinding, as-
sembly, and fixturing. Several control methods are currently used for these interactive
tasks. Most of them can be categorized o

into a type of active compliance which is

specified in the joint servo either by set-

robot
manipulator

ting a linear relation between force and

force
sensor

(shown in Fig. 1),such as impedance con- ‘ BEEE il
trol™, stiffness control™,or by controlling . ! g % : o
I, e e e

force in certain degrees while controlling

displacement (or force and velocity )

position in the remaining degrees such as

Fig.1 Contact task

compliance control,hybrid controlt.
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For the sake of simplicity,consider a force pushing against an environment whicy,
N

usually modeled by a mass,a spring,and a damper as shown in Fig. 1,i.e. ,with force bei

n
supplied by an ideal source F, the environment has effective stiffiness Ke,damping B“an(gi
mass M, which obey the following relation

dx d?x
_Fenv—‘Ke_"'Beaz"_Med_tz‘ (1)

where F,,, is the impact force supplied by the environment, z is displacement of the Surface.
Most forcg control strategies are based on this assumption or its variations. Hovvevm-,,[hE
model parameters are difficult to determine for the reason that they are not constant in the
whole impact procedure, (for a hard surface, the relation between force and displacemeny is
not a linear one),or even can not be expressed explicitly (the mass or inertia affected,for
example). Besides , there are many uncertainties in contact tasks can not be included by this
model, for example,the effect of frictions. Most force control schemes assume (either im.
plicitly or explicitly) that a model of the environment is available a priori. Though there
have been some methods treating this problem,such as adaptation and filtering™ it ;g
difficult to design a stable and appropriate response with no knowledge of the environ.
ment.

Virtual internal model method is an intuitive constructive control strategy. It is com-
posed of a virtual trajectory generator and a general servo controller. In the conventional

robotic servo system,the dynamic behaviour of a robot arm,that can be modeled as,

v =m(0)8 + h(0,0) (2)
is controlled so that the controlled variables of the arm can track the reference signal as
precisely as possible. A general continuous path tracking scheme described as (3) is of this
kind |

v = MO [0, + k(s — 0) + k(8 — 6)] + h(5.6) 3
where, @ = (4,6,0)7 is joint variables,0, = (6,,6,,0,)T is desired joint path,and t is the
control torque. If there is a constraint on the end effector,a force is exerted on the end ef-

fectror. This can be expressed as

r=M©6)8 + h,0) + JTf,, @

where J is the Jacobian matrix of the robot.
To track the desired path @,0n a surface V(@) while exerting a given force f, =— f..,
on this suface,virtual model method is introduced. The basic idea is to construct a virtual

trajectory @,

0, = F(@d’@9fd$fenv) €))
so that the robot can generate a force on the constraint surface which can approach fu
properly by trying to track @,. With an appropriately designed virtual model the force

error
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No- ®

ef :JT(fd - fenv)
— MO8, + MO [04 + 210y — ) + 2,6 — O] + h(8,0) — = 6)

{ approach zero with a proper convergence behavior.

wil
A good virtual model chosen for robot force control should require neither the total

decoupling of force and position, nor the unnecessary sacrifice of accuracy in position or
force- As mentioned before,there still exists the fundamental problem which is unavoidable
in girtual trajectory design, that is the need for knowledge of environment information,
without which stability and overall performance cannot be ensured. Besides ,the design pro-
cedure is mot an easy one.

Recently the applications of artificial neural networks have attracted huge attentions
of scientists in many fields for its emerging abilities in learning ,adapting ,and associative
memory. There have been several attempts to apply artificial neural networks to control
system designs'™. The robot force control problems with neural networks were discussed
in a few paperst®l. Based on impedance control method™ Cohen and Flash gave a method
by means of associative search network (ASN) learning to search the appropriate
impedance parameters of the controller. This method did avoid the direct teaching signal
acquiring , however , because the engaged reinforcement learning scheme is a much time con-
suming method, the cﬂonvergence behavior can not be observed distinctly. Fukuda and his
“colleagues™ proposed to use the hybrid control method to train a neural network directly
to implement hybrid l;osition/force control. Unfortunately,there was not an apparent de-
scription of the relation between their force controller and position controller. In this pa-
per,it is proposed to use sensed force and position information to construct a virtual inter-
nal model with neural networks through supervised learning. Suppose no knowledge about
the robot dynamics and environment dynamics is obtained , while the geometry of the robot
and constraint surface is known. The contact task is to control the robot to slide along a
given path on this surface while exerting a desired force on the surface. Two neural net-
works are engaged to construct our force controller. One of them is used to learn the in-
verse dynamics of the robot,the other one is to learn to express the virtual model. With the
proposed separate learning strategy ,the neural network can gain a proper virtual trajectory

‘ that can meet the demand of the force control tasks perfectly. Different to the two network
control strategies mentioned above,the proposed control structure avoids to learn to treat
the whole complex control mission with one big network ,but decomposes it into two sim-
ple ones which can be trained separately. This is called composite neural network con-
trollers in [15][17]. Detail existence conditions and learning procedures are discussed in
[17]. To indicate the efficiency of this algorithm,a two-link robot is engaged to perform
the force control along a planer surface. Simulation results show that this scheme is very

feasible. This attempt is an extension of our early work on neural network robot trajectory
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control™. Furthermore this control method can also be developed easily to other contacy
tasks in which the contact environment is difficult to model. '

The rest of this paper is arranged as folllows :construction of the neural network con-
troller and its separate learning strategy are described in section 2. In section 3,results of
the computer simulations are presented. Followed by some conclusions in the last section,
2 Neural Network Force control

In this section,two neural networks are engaged in cascade to perform force contro],

3

The first is used to describe the inverse dynamics of the robot manipulator which is invari-
ant,while the another one is to simulate the so called virtual model as mentioned above t¢
generate an appropriate virtual signal to the first network so that the two connected net-
works can perform force control. The whole system is described in Fig. 2,and the detail of
the controller is shown as Fig. 3. For the sake of simplicity,equation (10) is replaced by S,
= 0in Fig. 2,Fig. 3 and Fig. 4.

PID
b .
6—4=1"52 " o
1= NN robot =
8, vé

Fig. 2 Neural network force control system Fig.3 Neural network controller
The two cascade neural networks can be - L ;
trained jointly or in turn. But in any case,the & $i=0 : #
teaching signals cannot be obtained directly. - B 100t ftp b envie
To obtain the error signals of the second neu- s #
ral network at its output, the first network o #
must be engaged simultaneously,i. e. , the er- Fig.4 Inverse dynamics learning

rors at the output of the first network have to be propagated to the second network. To en-
sure the stability of the whole learning control system,very small learning ratios have to be
chosen if combined learning strategy is used. So this method is of poor convergence proper-
ties and time consuming. Here it is preferred to train the two networks separately.
Learning of inverse dynamics
Robot inverse dynamics is a system invariance,so it can be learned through some vol-
untary movements before the constraint motion. Consider an unknown robot dynamics

show as

r = £(6,0,0) )
anc_i suppose that a simple PID feedback controller represented by

7, = al(;— 0) + 2,6, — 0) + /ezjlowd — 6)dz],
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= aS,(e,), a>0, (8
can guarantee the convergence of 0,here,e, = 6, — 0 is the joint position error. Usually %;
are chosen such that p? + kyp + ki, is a Hurwitz polynomial,i. e, ,S;(e) = 0 is a stable
surface to the error e(#). A multi-layerd neural network expressed as (9) is used to learn

the inverse dynamics of (7),

T, = Qx(goaé,aﬂfh) : 9
where, w, is the adaptable weights,f, is the expected acceleration response of the

controlled robot that can be deduced from S, =0,

8, = 0, + by (B, — 6) + k(8 — O). (10)
With the gradient-like method"?'),an efficient neural network learning strategy can be

derived as

d'wl_ APN\T
r 1(;,—,;1) 5

where 7, is a positive factor which determines learning rate. With this method the neural

an

network can learn the true inverse dynamics of the robot while S, — 0. The details of the
training method as well as the trajectory control problems héve been discussed in our early
work[,in which a robust designing with variable structrue method is also studied. It
should be mentioned that theoretical results in [16] show that with 7, small enough,the
Jearning system can ensure the stability of the controlled object as well as the learning con-
vergence of neural network controller. ‘

Learning of virtual model

The learning of the second network is similar to that of the first one except that the
supervising signals are not what in the work/joint space but the propagated ones of the
simple PI force controller shown as (12) through the first network (the simulated inverse

dynamics).
e, = B, — 7 +a] G, — ] = BS B>0 (12)

where, g are positive constants with appropriate values which can determine force
convergence behaviors. This is shown in Fig. 5.

According to equation (5),a neural network which can be expressed as

8, = D,(8,0.,0,,0,0,w;) (13)
is employed to simulate the virtual model. ‘
Suppose the first network is perfectly learned,then the torque error caused by the in-

exactly learned virtual model can be describled as

ﬁsz(ef) = (px(bo + 3&,,,,,&,1,0‘;,&,6,'&/; )- (14')

H
Similar to the inverse dynamics learning,the learning strategy can be deduced as as
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dw; _ (29, 7(201)"
t 1 aw,) log, | 7 (13

where, 86, = @,(w;) — @, (w,) ,and “ * ¥ means the desired values,
To ensure the stability of the learning system it is proposed to add an extra Posig;

0

PID controller to compensate the position errors caused by the inexact initial force con

tre
virtual model. So the total torque exerted on robot joints is

=& +al(1— )8, + uS,]. (14

The whole learning system is shown in Fig. 5.

For a rigid surface, this extra PID position ——y

controller will not affect the static force error. _J

On finishing the training, the virtual mod- envir

el is well learned and the PID position con-

troller and the PI force controlier are of no P

use,then they can be cut down from the loop.

PI
3 Simulation Experiments

To indicate the efficiency of the proposed Fig:5 Virtal model learning
learning method,force control problem of a two-link robot is demonsrrare_d with computey
simulations.

Suppose that nothing about the robot dynamics and the environment dynamics is
known. The simulated contact task is preferred as a robot sliding along a frictionless plane
with a speed of 0. 1m/s,and exerting a desired force £, on this surface, The work is shown
in Fig. 1. This plane is 0. 5 meters long and is located 0. 8 meters apart from the robot
shoulder. The desired force is chosen as

_[25.0¢N, o0<<r<0.2s, N
fa= 50N, £>0. 2. " (16
The neural networks engaged are of the samne structure as that used in the early work[,
They are three layer feedforward networks ,wifh two nodes in each network output layer,
30 and 20 neurons in each first and second hidden layer separately. The first network (ex-
pressing the inverse dynamics) has 6 inputs (3 inputs X 2 joints) while the second one (ex-
pressing virtual model) has 12 inputs,

The training of the first network is similar to what we did in [147. The training path
is chosen near the contact surface so as to exactly approximate the inverse dynamics of the
robot in the vicinity of the surface. Force control problems are usually of oscillatory behav-
iors, expecially when the environment is rigid. So, to learn to control contact tasks, very
small learning rate is proposed to prevent unstable responses from happening.

After gaining the inverse dynamics (i. e, ,the first network is well trained) the first it-

eration of force/position learning control is not very satisfactory. This is shown in Fig. 6
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J J Fig. 7. Fig. 8 and Fig. 9 show that after some certain number of iterations, the oscillato-
an . . .
pehaviors of the contact task have been manipulated well to some extent. This is means

pat the second neural network has gained the virtual model in the specific domain.
f

N ) 0.6f X,/mm

! 2 4 /s i/s
0 " :
Fig.6 Environment force Fig.7 Position error
. X, /mm
T[N . 06
6 : 057
5} _—!
4
0.3
3
2 0.2
. 2 t/s
0 . 2 4 t/s - ) 2 ‘
Fig. 8 Environment force o Fig.9 Position error

In this simulation,the used robot parameters are the same as [14],while the environ-

nent parameters is supposed as
K.,=3500N/m, B,=1.0, M,+ M =25 kg.

4 Conclusion and Discussion

In this paper,a cascade neural network force controller and its separate learning strat-
gy are proposed. Besides the environment uncertainty learning ability, this controller has
ome other advantages. Contact tasks are of complex behaviors,it is not easy to learn these
esponses perfectly. In our designing the first network can be trained through voluntary
10tion. So training task is decomposed. With the two networks connected to accomplish
ifferent functions,it is easy to implement the exchange of path tracking to force control.
Jsually only path tracking control is installed in most robots,this method is useful to learn
virtual model to help these robots to gain the ability of force control.

We just show a simple applicaton of neural network on robot control, further re-

sarches of this kind are undertaken in our future work.
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