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Abstract: A structure for inverse identification of dynamic linear or non-linear system using
neural network is presented. Two types of closed-loop control schemes that combine the neural
network inverse model with PID are proposed. The dynamic feed forward multilayer network for i-
dentification and control is trained by a novel learning algorithm based on U-D factorization
Kalman filter (UDK). The potentials of the proposed structure and schemes are demonstrated by
simulation studies.
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7 Introduction

Inverse models of dynamic systems play a crucial role in many control strategies. Charac-
teristics of neural networks such as the approximation of nonlinear functions,the ability of
leasning from experiences,fault tolerance have made them one of the most effective ways to i-
dentification and control of non-linear systems. There have been some methods of inverse i-
dentification and control by neural networks! ™. Inverse identifications of many nonlinear
systems have been satisfactorily achieved. However most of the structures of neural networks
for inverse identification are static without taking account of possible time delay of the sys-
tem or are relatively complex. There exist some drawbacks in the BP algorithm widely used
to train the feed forward neural network for identification and control :low learning speed ,lo-
cal minimum. etc. . Therefore it is difficult to ensure the practicability and the reliability of
these kinds of strategies.

In order to improve the speed,the precision,the robustess of inverse identification and
control, a scheme of inverse identification of dynamic system using dynamic feed forward.
multilayer perceptron is presented and discussed. In place of the BP algorithm,a more effec-
tive learning algorithm based on the U-D {factorization Kalman filter is used for training of
the dynamic neural network. Combination of the trained inverse model with the PID evolves
two types of feasible,stable closed-loop controllers. The PID is added to compensate for the
remaining control error caused by inverse identification error, meanwhile providing teacher
signal for on-line training of the inverse model.

2 Structure of Inverse Identification Using Neural Network

For a single-input,single-output (SISO) controllable and observable, n -dimension dy-

namic system,its difference equation can be written as;
y(&) =F[y(k — 1,3k — 2),+,y(k — n),
utk —d)suCk —d — 1), ulk —d —m+ 1)] ¢D)
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where F[ ] is a linear or nonlinear transfer function, u(%),y(%) are inputs,outputs of the
system respectively, d is a pure time delay of the system.
If the system described by equation (1) is invertible,a stucture of inverse identification
using neural network can be established according to the following equation:
Uk —d) =TF[y(k) sy — 1)y, 9k — ) yutk —d — 1)y yu(k —d —m + 1]
(2
where IF[ ] is an inverse transfer function which represents output-input map of the system.
A block diagram of the identification structure is shown in Fig. 1. Where TDL is a tapped de-

lay line (Fig. 1(b)) which expresses various discrete time delays between output and input of

system.
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Fig. 1 Structure of inverse identification using neural network

Here , when the system input with delay «(# — d) is used as the neural output and the
system output and its past outputs y(&),y(k — 1), ,y(k —n) ,the system past inputs « (%
—d—1),u(k—d —2),+,u(k —d— m -+ 1) are used as neural inputs,the inverse transfer
function of the unknown plant is obtained in the neural network. The input (&) is assumed
to be random signal or PRBS signal uniformly distributed over certain interval. The error sig-
nal between the network output and the system input with d delay time e(k) = «(k — d) —
Uk — d) is used to train the network. The square error (error energy function) is minimized
and neural network output converges with the plant input as learning progresses. As men-
tioned above,since the neural network introduces TDL feedback it can approximate the in-
verse model of dynamic system.

To achieve the precise mapping to inverse model of the system in real time,a fast learn-
ing algorithm with good performance for training the neural network must be needed. The
neural network chosen for inverse identification is a feed forward multilayer network trained
by the UDK algorithm.

3 Neural Network for Identification and Control

Compared with the BP algorithm;the UDK learning algorithm has the advantages of fast
learning speed,good numeric stability ,insensitivity of learning parameters ;avoidance of local
minimum. The Kalman filter can be used to train the multilayer network. The U-D factoriza-
tion technique also can be introduced to enhance the reliability and precision of training for
inverse identification and control. So it is suitable for tasks of identification and control.

The multilayer perceptron is shown in Fig. 2,where S(&) = {s;,},Y () = {y,,} respec-
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tively represents input vector and summation output vector for each layer j,W (&) = {w;,} is
a weight vector of the network. For an inverse identification task,the UDK algorithm can be
realized as the following steps:

1) Initialize:

a) Randomize all weights W,; as small numbers

b) Initialize the U(010),D(0]0)

¢) Equate the node offset S;—;, =1

7O P s Y £ O —=5u

FO Sz S Yaz O Sa

7O P zym F O oS3
Hidden layers Outputs

Fig. 2 Feedforward multilayer neural network
2) Select training pattern.

Randomly select an input/output pair of the network S;,,0, according to dimensions of
the system and the range of the inputs and outputs.
O, =ulk—d,
Sop = [So1sS0zs*** »50n ]
= [y(k),y(k — 1) yreryy(k —n)ulk —d — 1),ulk —d — 2) e ulb—d—m+1)],
sip = Uk — ).

(3
3) Run selected pattern through the network
nj—l
YVip :Z(S)ﬁl.iwipi 4)
=0
Sjp :f(yjp) = Cj(l — exp(— ayjp))/(l + exp(— ay,-p), (5)

where for every node p,#; is the number of inputs to a node,constant a is the sigmoid slope
and values of ¢; are determined by the range of the input and output of the identified system.
4) Compute the backpropagate error signals
the error signal in the output layer L.
_ er, = ' (y1,)(0, — S0 ‘ (6
the error signal in the hidden layers: ;
e, = I (3jp)ei11,Wis1,i, ¢P)
where f(y) = df/dy = c;2alexp(— ay)]/[1 + exp(ay) I

5) The desired summation output:
d, = £7(0) = Tin(A + 0,/¢)/ (A = O,/e)). ®

6) Compute the Kalman gain and U-D factor
a) iteration of state estimation:
Wklk—1) =Wk — 1]k — 1), )

b) iteration of covariance:
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PhlE—1) =Pk — 1]k —1), (10)
¢) U-D factorization:
Pkl — 1) = Uy Dk |k — DUk an
d) the lately U-D factor and the Kalman gain matrix:fori = 1,2+*,n:
t(i) = Uiy @5 j)R (1) s 12)
Y@) = Dy Gt (13
ati + 1) = a@@) + tO7E), a4
«(0) = 1(Variance of measurement)
Dy (iyi) = Dy (050)a(@) /aG + 1), s
B(G,j) = U1 Gom)V(m) s j=1,2,"57, (16)
AG) =—t(@)/a@@), an
U,i(isj) = Uspr Gy ) + BGLjDAGD s 1> (18
K (k) = B(k,n)/a(n). a»
7) Update the weights
For output layer L :
WLk |k =W, (klk — 1) + K (&) (d, = y1,). 20)
For hidden layer j :
W,(k|k) = W,;(k|k — 1) + K,(k)e;p (21)

where z; is the learning step size of the neural network:

8) Test for completion:Repeat step 2)~7) until the mean-squared error of the network
output of a fixed number of iteration is satisficd.
4 Closed - Loop Control Based on the Trained Inverse Model

Once the inverse identification of the plant has been completed, the control system can
be constructed based on the trained inverse model.

4.1 Direct Inverse Control

One possible control law is Neural
Network
shown in Fig. 3. The inverse model 5. + &
. . . Inverse u(k) y (&)
is simply cascaded with the con- Model Plant —

trolled system in order that the
composed system results in an i- TDL

dentity mapping between desired ' TDL r'

response (i,e,the network inputs) ' .G\ +

and the controlled system output. \,j;)
€

Thus the network acts directly as Fig. 3 Direct inverse control scheme
the controller:

Uk) = IF[y,(k + d)yy(k — 1,3k — 2,0, Uk — Dy, Uk —m + 1] (22)
or

Uk = IF[y,(k +d) sy, b +d — Doy k+d —2) Uk — 1), Utk —m + 1)]
(23)
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where v,(%) is a reference input of the controller. To achieve high control quality,the refer-

ence is added ahead of d discrete time due to the pure time delay of the plant. The objective of
control is to minimize MSE = %Z (y(k) — y,(£))2.

Clearly this control law relies heavily on the fidelity of the inverse model used as the
controller. The error of the inverse identification will always keep during the control period
and it is difficult to guarantee the stability of the control system. To enhance robustness and
accuracy of the control,two simple and realistic closed-loop inverse control designs in combi-
nation with the PID are introduced.

4.2 Modified Control 1: Inverse Model Cascades with the PID

Neural
+ . Network
L+ d) 2 u
k% v e(k) PID , : I . S
2 1] TDL ; M“‘;ﬁ“ Plant o
TDL F:

Fig. 4 Block diagram of modified control 1

The block diagram of the modified control 1 is shown in Fig. 4 PID,the trained inverse
model. The plant are cascaded orderly. PID is used to control the composed system. Since
mapping between the input and the output of the composed system is;

y (&) = Flu(k)] = F[IF[u(k)]] = u' (&) Qo
PID controller regards the controlled plant as a linear system with unit gain although the
plant may be a nonlinear system. If the inverse of the model is not perfect,the colsed-loop
PID helps to reduce the sensitivity of the whole system against this type of error and provides
zero steady state ereor.

u' (k) = qole(k) — ek — 1D] + qie(k) + qle(R) — 2e(k — 1) +e(k — 2)] (25)
where qo,9;,q,are PID parameters respectively. e(%) is the error between the reference signal
and the output of the system.

4.3 Modified Control 2:Inverse Model Parallels with the PID

Au
Plp Neural
ERCE ) Network
' v uy (B) u(k) y&)
: N B e
, ‘ o TDL
e(k) - !

Fig. 5 Block diagram of modified control 2

The block diagram of the modified control 2 is shown in Fig. 5. A trained inverse dynam-
ic model also cascades with the plant,but the PID controller,the trained inverse model are
paralleled as the controller of the plant. A PID signal from the error between the reference

signal and the output of the plant reduces the error of inverse identification at the output of
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the neural network:
u(k) = Adu + u, (k) (26)
Au = u(k) — u (B). Q7
For this architecture ,the function of the inverse model and the function of PID that aims to
decrease the control error are combined and made up mutually. The PID signal can also be
used as teacher signal or the neural network for on-line training of the inverse identification
to adapt model variations caused by distrubances or other unexpected factors. In this case the
learned weights of the inverse identification are used as the initial weights of the on-line con-
troller.
5 Simulation Results

In this section two examples are presented. The first example is chosen to emphasize the
inverse identification and the control of a nonlinear dynamic plant,the second example is cho-
sen to emphasize those of a linear dynamic plant with pure time delays. These experiments
were programmed in C** and run on a PC 486.

Example 1 The plant to be identified and controlled is described by the following dif-
ference equation:

v, (B) = 6y,(k — 1D/(1 + ¥4k — 1)) + u(k). (28)

It can be verified that the output of the plant satisfies the inequality | y,(k) [<5 for any
input | #(k) |< 2. According to the description in Fig. 1 the inverse identification can be se-
lected by the equation:

Uk) = N[y, (k) ,y,(k — 1] ¢1))
where N is a three layer network with 2 inputs,20 hidden nodes,1 output. The learning pa-
rameters are selected as: ¢; = 2. 5,4; = 140,a = 0. 2,D(0|0) = 100 I. The input to the plant
is a Gaussian random signal uniformly distributed in the interval[ — 2,2 Jas the desired output
of the neural network. After training with the UDK algorithm in 2000 iterations the learned
inverse model is added to different control architecture described in Fig. 3~Fig. 5 as con-
trollers. When reference signals of the control are square waveform, the responses of the
plant are shown in Fig. 6.

It may be seen from Fig. 6(a) that the inverse nonlinear dynamic model can correspond
to the real plant well ,which verifies the availability of the stfategy as outlined in the previous
paragraph. But the static error of the direct inverse control due to incompleteness of the in-
verse identification may always keep during control process. Fig. (6) (b), (¢) show two modi-
fied control schemes which have improved the performance of the direct control since the PID
and the feedback are successfully introduced. PID parameters for two cases are : ¢o = 0. 1,4,
= 0.3,q, = 0. 1. Comparing with the modified control 1,the modified control 2 can trace the
reference quickly and can be trained on-line to adapt some time-varying factors. The modified
control 2,however,is not suitable for non-monotone system. Fig. 6(d) shows that the re-
sponse of nonlinear system using PID can not converge well.

Example 2 The plant is described by the following difference equation:

y,(B) = 0.3 y,(k —1) + 0.4 y,(k — 2) + 1.25 u(k — 1) + 0.75 u(k — 2).  (30)
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Fig. 6 Example 1: control of Nonlinear plant using NNS

This is a two-phase dynamic linear system with time delay. The inverse identifier can be se-
lected by the equation:

Uk —1) = N[y, (&),y,(k — 1),y,(k — 2) ,u(k — 2)] (31D
where NV is a three layer neural network with 4 inputs, 10 hidden nodes and 1 output. The
learning parameters are same as example 1 except ¢; =1. 1. The input to the plant is a Gauss
random signal uniformly distributed in the interval[ —1,1]. After training with the UDK al-
gorithm in 2000 iteration,the trained model is respectively add to different control architec-
ture described in Fig. 3~Fig. 5. The responses of the plant are shown in Fig. 7. It can be seen
from Fig. 7 that inverse model of the dynamic linear plant with pure time delay can also cor-
respond to the real plant,and two modified control laws remarkably decrease the error of the
inverse identification thereby improve the performance of the control. Comparing with the
conventional PID controller with optimum parameters,the modified control laws have higher
response speed,ability of anti-disturbance ,and the characteristics of the modified control sys-
tems are not sensitive to the PID parametes.
© Conclusions

The basic concept of inverse identification of dynamic system using neural network has
been discussed. A fast stable learning algorithm was introduced to train feedforward multi-
layer network. In particular two hybrid Eclosed—loop control structures consisting of the direct
inverse controller which parallels or cascades with a PID controller were proposed to improve
the performance of the control. Here the control of nonlinear plant is transformed into the
linear control,which provided a clue for control of nonlinear system. Simulation results have
showed that with these methods of the inverse identification and two modified control,in-
verse models can be satisfactorily achieved,the accuracy ,che response speed and the stability

of the control can be evidently improved.
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Fig. 7 Eszample 2: control of linear plant
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