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Remarks on Reachable Solutions of One Predator and
Two Preys System
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Abstract; In this paper,a general Lotka-Volterra system of one predator and two preys is in-
vestigated to solve the open problems in [4]. By constructing domains in R® ,some interesting re-
sults are obtained :there are a number of periodic solutions which can be approached as ¢ —> oo . We
also give the analysis of the Hopf bifurcation of the system. .

Key words: Lotka-Volterra predator-prey system; reachable solution

1 Introduction
Consider the ordinary differential equations
v x’=ax4dxy~exz,
y = by +dxy — fyz, D)
2 =— ¢z + exz + fyz, o 7
where a,b,c,d e and f are positive constants. We will focus on the solutions of (1)with posi-
tive initial conditions, i.e. , (0),y(0) ,2(0) >0. It is easy to show that under such.condi-
tions , z(2) ,y(t) ,z(2) are all positive,for all £ > 0.

From the ecological viewpoint,to settle the question for these classes would be interest-
ing,cf. [17. It is easy to see that all solutions of (1) in the xz-plane are periodic except the
critical points. That means the prey dies out and the predator z and the prey z persist. It fol-
lows from the paper that if be + dc<af ,not all solutions of (1) tend to critical points,that
is :there exists one periodic solution which would be approached. Further,two distinct period-
ic solutions which could be approached are found. At last,a number of periodic solutions
which can be approached is proved. If be +dc>af, a nuﬁber of periodic solutions which can
be approached is proved. To some extent,the method of constructing a domain on R? for (1)
is new and mathematically interesting. ‘

Some results for special cases of (1) have already been established,cf. [2~4]. In[4],we
know that each solution of (1) may tend to critical point as ¢ —> co ,or approach a periodic so-
lution on coordinate plane. An open question is:in the case be + dc af, if given any period-
ic solutions of (1) in either of the coordinate planes, there exists a unique solution which ap-
poaches it orbitally as ¢ — oo from the positive orthant x >0,y > 0,z > 0. Theorems 1~4 of
the paper answered this question to some extent.

Definition: A periodic solution of (1) is said to be reachable if there exists a distinct

solution which approaches it orbitally as t — co from the positive orthant x >0,y > 0,2 > 0.
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The purpose of this note is to prove that a number of the periodic solutions of(1) in ei-
ther of the coordinate planes are reachable.
2 Results in case be 4+ dc < af '
Case 1  be +dc<<af.
Let xy = ¢/e,y, = 0,2, = a/e , and (x(#),y(¢),2()) be a solution of (1). Put
2,(8) = 2(t) — 2oy 2,(2) = y() — 3oy X)) = 2() — 24, 0= (dc — af)/e + b.
and (1) becomes
x] =— exyx; — dx,xy — exsxy — ATy,
xy = dx,x, — fxsx, + 025, 2
zh = exx; + fa,x; + exiz, + fxize.
Let F(x) = a; — adog(x,/xe + 1), H(xy) = x5 — zlog(as/z, + 1), and Vi ,axy,25)
= F(x,) + x, + H(x,), then it {follows from (2) that

%V(x1(t)9xz(t) 913(t)) = sz(t> < 0. l (3

Lemma 1! For any ¢ > 0,V (x,,2,,2;) = ¢ defines a closed bounded strictly convex
2-surface,here strictly convex means that any line in (x;,x,,23) space intersects it in at most
2 points, '

Lemma 2™ V(x, @) ,2,(t) ,25(2)) > Lyas t —co, where 0<C Ly < oo, So, 2;(8) sz, (2)
x;(2) are bounded forz = 0. .

Lemma 3™ For any periodic solution (z,(2),0,z; () )b of (2) with the least period T >
0, if it is the w -limit set of (2, () ,2,(t) y25(2)) , there exists 7,7 2= t > 0, such that

(2, () — 2, (¢ + D + 25 @) + (23(1) — 23 + 1))* > 0 as ¢ > oo,

Lemma 4 For any sloution (x,(#) ,x,(t) »2,(2)) of (2),2,(t) = 0 as t = oo,

Proof It follows from (3) that ’

Ly @@, 0,200 <o, @

Vi ()52, () s 23(2)) — V{(21(0) ,2,(0) ,2,(0)) = UJ;xg(S)dS- (5)

n”

So ﬁ) x,(s)ds < oo, that is;for any € > 0, there exists an N > 0, such that Jm x, (2)de <<
gasn > N, '

It follows from Lemma 2 and (2) that there exists an M > O such that |z] ()| <M as ¢
= 0.

Suppose there exists {z,},¢, — o0 as n —> oo, such that x,(z,) —> ¢ as n —> oo where ¢ > 0.
So for each ¢,, there exists n, > 0, as n > n,, there exist ¢} ,¢), such that .

Loy <t <t) <t,, )] =c/3,2() =¢c/2,

and v th —tl'—>Qasn—>o0, x,(¢) >c/3ast €& (t!,t)). (6

There exists n, >> ny,t, — t) < c/(6M) asn >n, .Let g, = ¢?/(18M), there exists T', >

ta s such that Jj 2, (£)dt < g,. It follows from (6) thatc (. —¢t!)/3 < Jt:xz(t)dt < éo , so there

n

exists t € (¢”,t)), such that 2y (2) = (¢/2 —¢/3)/ ) — 1)) > M ,this constradicts M >z} ().
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Q.E.D.
For N > 1, let
Gy = {(21,0,23) |21 >— 20,25 >— 20, |da; + fa;| <— o‘/N‘,v]dxl — fax;| <~ o/N}.
For each N, there exists Cy > 0, such that '
Se, = {(@1,0,2) [V(21,0,25) < Cn} CTGus S, NGy =D )
For such Cy, we have
Lemma 5 If V(2,(0),2,(0),23(0)) = Cy, then the solution (z,(&) ,z;(£),z;(2)) of (2)
satisfies
ldx,) () + fz;(0) | <~ 0/N, |dz; @) — fa;(0) | <— 0/N ast = 0.
Proof It follows from (3) that ‘
Vi(a, @)z, (8) 525(2)) <V (2,(0)2,(0) ,23(0)) = Cyas t 2> 0.
Viz, (1) ,0,2;(1)) < V(ll(t),lz(f),xg(t)) < Cyas x,(t) = 0.
that is, (2;(),0,2;()) € S¢, , and
|dx, (t) + fz;( | <~ 0/N, |dx, () — fz;(®)| <— o/N.
Q.E.D.
It is easy to see that:
Lemma 6 In the sense of Liapunov stability,the critical point (0,0,0).0f (2) is stable.
Theorem 1 There exists a periodic solution of (1) in x;2; plane which can be ap-

proached.

Proof Let N > (1 + «/—-)/2 Suppose solution (z, () »x,(t) »x3(¢)) of (1) satisfies
V(x,(0),x2,(0) ,25(0)) = Cy, here Cy is chosen in(7).

It follows from Lemma 5 that |dx,(2) — fx,;(6) | <<— o/N for allz > 0, that is:
(A + 1/Noz <5< — 1/ Moz, (8)
of 2,(5)ds = 2,0 exp[(l —1/Nyat] — 1IN/(N — 1), (9
o[ 2,(5)ds < 2,(0) {expL 1 + 1/Ndor] = 1IN/ N +0, (10)

o] (s == 2, (ON/ (N = D,

Vi(z, (@) 2, (8) y2,(2)) = F(2,(0)) + H(x;(0)) + 2,(0)/(1 — N). aw
Let 2;(0) = 0,2,(0) = Cy/(N + 1),F(2,(0)) = NCy/(N + 1), then
Vi (@) 2,8 s25(0)) =2 (N? = N — D/(N — 1) >0ast=0.
It follows from (3) that for this solution there exists C > 0,
V (2, () a0, (1) y2,(1)) — C as ¢ —> oo,
That is,the approached periodic solution is: L¢:V(x;,25,23) = C and x, =0. Q.E.D.
From Theorem 1,we can choose Ny, (2;(0),2,(0),25(0)), such that V(x,(0),x,(0),
23(0)) = Cy, and V(x;(®),x,(),2;(2)) — C. Here the existence of C is shown in
Theorem 1. Then we can choose N, > N,, such that GNz C Sc. From the proof of
Theorem 1,we can choose (z,(0),2,(0),2;(0)),V (2,(0)),z,(0),2,(0)) = Cy, ;and
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V(@ @),2,(8),25()) = (N5 — N, — 1D/(N, — 1) >0,
Vi, @),2,() ,23()) > C >0,
and it is easy to see that C > C > (. ‘
That is:an instinct periodic solution can be approached. Then we have:
Theorem 2 If the periodic solution L¢ (Cy > 0) can be approached,there exists C;,0 <C
C, < (i, such that L, can be approached.
Theorem 3 If L, ,LC C Gy(0 << C, << Cy) can be approached sthere exists C > 0,C, <<
C < Cy, such that L can be approached.
Proof Let D > 0,C, << D < C,. Suppose the solution (z,(2),x,(),z;(2)) satisfies
V(2,(0),2,(0),2;(0)) = D, and z,(0) = (D — C)(N — 1)/(2N), from(9) ,we have
V(z (@) y2,(t) y23(2)) =D + {exp[(1 = 1/N)ot] — 1} Nz, (0) /(N — 1)
=D — Nz, (0)/(N — 1) = (D + C)/2 > C,.
Suppose V (x,(¢) y2,(¢) y23(¢)) — C as t = oo, then L is approached and C, > D > C >
C.. Q.E.D.

From theorems 1,2,3, we can conclude that for any N >(1+ +/5 )/2,and the related

Sc,, » the set of periodic solutions which can be approached is dense in Se,-

3 Results in case be + dc > af and some discussions
Case 2 be+dc>af.
Letzy = 0,5, = ¢/f,2, = b/f, and (x () ,y() »2(2)) be a solutin of (1).Put
21(t) = x(@) — x65,2:(8) = y() — yo525(t) = 2(2) — 2,
and (1) becomes ‘

x{ = x,(6 — dzx, — ex;),

l‘é = (xz + yo)(dx1 - fxs), a2
x3 = (x5 + z,) (ex, + fz,),
here o=ua— (dc+ be)/f>0.

By using V(z,2;,23) = 2, + 2, — yolog(x, /v, + 1) + x; — z,log (x3/20 ~+ 1) in the place
of V(xy,z,,23) of Case 1.

Let Gy = {(0,25523) |2, > — yo,25 >— 2y, |dax, + ex;| < o/N, |dx, — exy| < o/N).

Let N> (1 + v'5)/2 ,choose Cy > 0,Sc, = {(0,25,25) |V (0,25,25) < Cy} C Gy and
Se, NIGy = .

Let Le:V(zyy25,23) = Cand x, = 0.

Then it follows that;

Theorem 4 1) There exists a periodic solution of (12) in x,z; plane which can be ap-
proached.

2) If periodic solution L¢ (€, > 0) can be approached ,there exists C,,0 << C, < C,, such
that L¢, can be approached.

3) IfLC sLc, CGy(0<<C, <<C)) can be approached , there exists C > 0,C, < C<Cy, such
that L¢ can be approached

The proof is omitted.
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From Theorem 4,we can conclude that for any N > (1 + v'5)/2, and the related Sc,» °
the set of periodic solutions of (12) which can be approached is dense in S¢, on yz-plane,

Here the result of Hopf bifurcation of the system is stated but the proof is omitted:

In case be + dec < af , all the solution phases from R} tend to the critical point or closed
phases on xz-plane. ‘

In case be + dc = af, all w-sets of the solution phases from R are themselves.

In case be + dc > af, all the solution phases from R% tend to the critical points or closed
phases on yz-phane. )

Remarks An open question arised from the paper is:Can the set of periodic solutions
which can be approached be extended to the related R% plane (on the zz-plane or on the

yz-plane )?
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