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Abstract : Some concepts of the structure and interconnected stabilization of the neutral linear
time-varying interconnected control system with multigroup multidelays and perturbation parame-
ters are established. A positive definite quadratic form V-function via choosing the symmetric posi-
tive definite solution matrix of Riccati matrix defferential equation is made up. On the base of the
equivalence method of Lyapunov’s function,the interconnected stabilization of the linear time-vary-
ing control system without delays and perturbation parameters imply the interconnected stabiliza-
tion of the neutral linear time-varying interconnected control system with multigroup multidelays
and perturbation parameters. At the same time,the estimate formulae of the bounded for both
time-delays and perturbation parameters are given.
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1 Questions and Methedic Formulation

The concept of the structure and interconnected stability for large scale continuous dy-
namic system had been formulated by Siljak,D.D.",and had analyzed them for continuous
large scale system in a systematic way. In 1994, Liu Yongging and Zhang Xinzheng™! had
studied the structure and interconnected stabilization problems of the linear time-varying in-

terconnected control system with the multi—group multi-delays and perturbation parameters
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In engineering and social practice,propagation of any signal and information is always to

exist time delays. Due to the existence of some perturbation factor ,enabling some loop tem-

% This work is supported by the Natural Science Foundation of Guangdong Province (970040).
Manuscript received Jul. 25,1996,revised Mar. 22,1997.



No. 5 Stabilization Decomposition of Neutral Linear Time-Varying
’ Interconnected Control Systems with the Multi-Group Multi-Delays 795

proary interruption or get on again,this kind of control system with the multigroup multide-
lays will take place some change in structure. Therefore, there are some problems of the
structure and interconnected stability not only in the retarded interconnected control sysetms
but also in the neutral interconnected control systems,namely,the control system bear rela-
tion to the rate of change #(z) and z(t — 7) of the state variable x(¢). We are again in need of
studying multilevel hierarchy multi-loops negative feedback interconnected control system in
practice , now ,that is appearing from structure and interconnected stabilization problem of the
neutral linear or nonlinear continuous interconnected control systems with multigroup mulfi«
delays , its mathematical model is always neutral differential equation with time delay vari-
ables. The problems of the interconnected control system are naturally in infinitive dimension
space :ﬁso the interconnected stabilization of the neutral linear time-varying interconnected
control system with the multi-group multi-delays becomes more difficult and more complicat-
ed. In this paper,based on the equivalence method of Lyapunov’s function given by Liu
Yongging ,the problem is solved.
2 Structure and Interconnected Stabilization

Considering a neutral linear time-varying interconnected control system with the multi-

group multidelays
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EFy('),'Z':l,“‘,n, (2.2)
Y@= D cyx;t) = Fp(0), g =1,,p, (2. 22)
j=1

where I is an identity matrix;
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delays t{2 > 0,(s = 1,++,N;),75) > 0,(l = 1,°+,N;3i,j = 1,+*+,n) are constants or func-

tions of variable z. And vectors x(£) = (2, ()2, @) su () = (uy (@), ,u, ()", and
y(t) = (3, (@) s+ y,()) 7 ;e,;is the element of N X N interconnected matrix; E = (e;;) which
is generated by fundamental interconnected matrix E = (¢;;) (denoted by E € E) , i.e.,
where ¢;; is either 0 or 1.

Definition 1 For delays &) =0 (s = 1,++,N,), 75 =0 = 1,0+, Ny3isj =1, ,ﬁ)
and mutual connection matrices E§° (2) € Ef° (t)(a =r,s5,l,d ,h;3=1,2,3,4,6), if the triv-
ial sloution of the closed-loop system of the multi-group multi-delays and perturbation pa-
rameters neutral nonlinear time-varying interconnected control systems with the time-delay
control vector functions (2. 2) is asymptotically stable,then we call the system (2.1) is in-
terconnected stabilization.

In the neutral interconnected control systems with the multigroup multidelays (2. 1),
when z = 0, if we don’t consider the perturbation structure interconnected term and the per-
turbation interconnnected term,then (2.1),(2. 1a) become linear constant time-varying con-
trol systems without delays and perturbation structure parameter

() = AWz (@) + BWu @), (2.3)
y@) =C@®x@), (2. 3a)
where
A@) = (@;))usnr B@ = Gy (t))uxns C@ = (i@ pxne
Assume that the matrix pair (A(2);B()) is uniformly completely controllable,and the ma-
trix pair (A@);C(2)) is uniformly completely observable for any ¢ € (¢,5 + o) ,then it is
possible to choose optimal negative feedback vector function
u(t) =— K@Wz@), (2.4
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which minimizes the performance index of the quadratic form for system (2. 3), (2. 3a)

J = ﬂm[x%)Q(t)x(t) + @ OR@Wu ) e, 2.5)
such that the characteristic roots of characteristic equation
HQ = |AG) — BOK@ — AWI| = o, (2. 6)
for closed-loop system of linear time-varying control system of .(2. 3), (2. 3a)
z(@) = (AG@) — BWOOK@)Hx@), (2. 7)
satisfy
Re(A@)) <— 70, (2.8

where 7 > 0is a constant,that is,the zero sloution of closed-loop system (2. 7) is uniformly

asymptotically stable, where K(z) = R™*(2)BT(t)P () L (ks (#))mxn for any £ =1, P is the

only one symmetric positive definite solution of Riccati matrix differential nonlinear equation
P@) + AT@P@) + Pt)AG@) — POBWRT' OB WOP®) + Q@) =0,

(2.9
where R(¢) and Q(z) = CT(t)C(¢) are m X m and n X n symmetric positive definite time-vary-
ing matrix ,respectively.

By using the symmetric positive definite solution P (#) of (2. 9) to construct a symmetric
positive definite V-function of the quadratic form )
Viz@®) = " OP®Oz@). (2.10)
Krusovskii point out that,for V(x()) in (2.10), there are constants 8, > 0,8, > 0,
such that ‘
Bt WDz () <V (x (@) < B’ (Dx (). (2.1D
Lemma 1 Assume that the matrix pair (A():B(#)) is uniformly completely control-
lable,and the matrix pair (A(t):C()) is uniformly completely observable,then there exists
the positive definite function (2.10) of quadratic form,such that
Viz@)) <0, (2.12)
that is ,the zero solution of the linear time-varying closed-loop system (2. 7) is uniformly
asymptotically stable.
Proof Calculating the derivative V(x()) along the trajectory of closed-loop system
2.7
V(z@))n= [T OP @) + 2T(OP Wz @) + 2" (OPx@) Jan
=2"WOPWx@) + 2T OATOPDOx@) — 2" OK OB (P () (1)
+ 2T OPWAWz@) — T OPOB@K@®x().
' (2.13)
By (2. 9),we have
P@) + AT(P @) + P(OAW — POB@OR I WOB WP =— Q1. (2.14)
Putting (2.14) into (2. 13),and paying attention to K(zﬁ) =R7'(t)B* ()P (1), we obtain
V(z())pn= 2" (K OB @OP @) + Qt))x(t)
=— 2T ()P WOBOR OB ()P @) + QU)x(t). (2.15
Due to
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POBMOR T WBTMOP@ + QW = POBMRIOB ™ @WP@® + CTHCH
is a symmetric positive definite matrix , there are the maximum and the minimum characteris-
tic values @, > 0,2, > 0, respectively ,such that
a2t (D) <z @) (P()B@RI (OB WP @) + CTHOC@)Nx (1) < a,xt (Hx@).
(2.16)
From (2.15) and (2.16) we obtain
V(@) on <— &z Wz @) < 0. (2.1D
This shows that the zero solution of closed-loop system (2.7) is uniformly asymptotical-
ly stable. The proof of Lemma 1 is completed.
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Regarding (2. 4) as the suboptimal negative feedback vector function of (2. 1) with the
multigroup multidelays,we obtain a closed-loop system
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Lemma 2 Assume that nNsa) <1, and z(¢) is a solution of (2.19),and || (&) || <4,
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h, = n(d, + N.a, + N.a, + Nbmk, + Nbmk,)/(1 — nNsa)), h, = hi,

31 — sup{ la,'j(l> - EEif(t)kfj(t> Q ;i’j : 17'“'77l}~
f=1
N can be a constant or a function of variable ¢.

Proof The proof of Lemma 2 is similar as that of corresponding theorem in [4 1 ,we
omit it here.
Lemma 3 Assume that the conditions of Lemma 2 are satisfied,then we have the esti-

mate formulae as the following:
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the last inequality has used the following formula;
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where ¢ — ) << t; < t,t — r§) < ¢; < t. Defining a set B as the following: -
B={X;X € R, VX)) <4V {x, @)ooz, @)} (2.23)
Lemma 4 If P, = (x,(¢; — 750, ,2,(t; — 1;,)) € B, then

Jn
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where B;; = 4f3,/8, is a positive constant.

Owing to the two sum-sign items at the head of (2. 2) is the right side of linear time-
varying control system (2. 3) which is without time delay and perturbation structure parame-
ter ,while five sum-sign items at the back of (2.2) can be regarded as the perturbed term of
control system (2. 2) with the multigroup multidelays. When there aren’t perturbation, a, =
b, =t = 0, second of (2.2) equals zero. Therefore, when perturbation structure parameter
a,,b, and delays 78,7}, are very small, regarding the five sum-sign items at the back of

(2.2) as the perturbation term of (2. 3). Therefore, taking (2. 3) as the negative feedback
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vector function of control system (2.1) or (2.2) ,and taking (2.10) as"the symmetric posi-
tive definite Lyapunov’s V-function of the quadratic form of control system (2.1) or (2.2),

we can obtain the following Theorem 1:
N N

3 3
Theorem 1 Suppose that || Zﬁé” W <1, 1I— zgé“ (¢) is a non-singular matrix,
I=1 =1

for any ¢ == t,, the conditions of Lemma 2 are satisfied, (A():B()) is uniformly control-
lable, (A(#):C(#)) is uniformly completely observable,then for V Ef” (2) € Ef” (2), there are
constants 4, > 0 and A, > 0, uniform symptotical stabilization of the trivial solution of
closed-loop system of system (2. 3) implies the uniform interconnected asymptotical stabi-
lization for the neutral time-varying closed-loop control system (2. 2) or (2. 1) with the

multigroup multidelays if

0K D, <4, 0Kt<4,, (2.25)
where
A = a[2pn* (N, + N, + kymNH ™ (2.26)
A, = a{pn*(1 + Bi)[a; N, (N, + N, + Da,
+ N,h,ad, + (N, + Dbkym) + Nhya, 137 (2.27)
Proof The proof is omitted here.
N3 N3
Theorem 2 Suppose that || z}ﬁ” @ <1,I— ZZ? (¢) is non-singular matrix, for
=1 =1

any ¢ =>1,, the conditions of Lemma 2 are satisfied,and the trivial solution of the linear time-
varying closed-loop system (2. 7) of (2.3) is uniformly asymptotically stable,then there ex-
ist constants A, > 0 and A, > 0, such that for V Efg“) @) EEP @B =1,2,3,4,6; a=r,5,
/,d,h), the trivial solution of the closed-loop system of the neutral linear time-varying con-
trol system (2.2) or (2.1) with the multigroup multidelays is the interconnected uniformly
asymptotically stabilization if

0D <4, 0<r<A4,. (2.28)

Proof The proof is analogous to that of Theorem 1 and therefore is omitted.
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