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Abstract : The blind identification methodology for one sort of second-order Volterra models-
truncated quadratic nonlinear models based on spectra analyses is developed in this paper. The dis-
cussions are shown that it is efficient and accurate as per demonstrated by the simulations.
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1 Introduction

Truncated Volterra nonlinear models identification , which involves determination of time
domain model kernels or frequency domain model kernels,is a very important issue in many
practical engineering problems '?), Due to the difficulty in the spectra estimations of the non-
linear models,available model input signals were usually assumed to be Gaussian or i. . d.
random processest™ ), In this paper, however, we will show that the truncated second-order
Volterra models can be identified in the time domain based on some properties of the model
output statistics only, that is, the model kernels can be determined blindly. The result is
shown accurate as per verified by the simulations. Besides , the methodology is very general
and can be readily applied to the engineering practice.
2 Blind Identifiability of Quadratic Models

Consider a stochastic quadratic nonlinear model

@) = D> hG,pDx — Dt — j) D

=0 i=o :
where the excited sequences of the m()Jdel {(#)} are unobservable zero-mean, 1. i. d. signals
with 7,, = E[z*(£)] 5 0, and 7,, = E[2*(t)] 0 . Unknown quadratic kernels include {A(,
JsV i=0,1,,g,7=0,1,- »¢}. Without any loss of generality , the kernels satisfy the fol-
lowing properties 1) symmetrical; 2 (i,7) = h(j,i),Y i % j;ii) bounded: A (7, ;) = 0,V i,7>
gs iii) causal: h(¢,j) = 0,V 7,7 < 0; and iv) stable. 2 [A(i,7)] << co. The second-order

moments (autocorrelations) of the output sequences {y(#)} for model (1) can be defined as
Mi(m) = E[y()y(t + m)] (2
where E denotes an expectation operation and the discrete time quantity m is usually termed

as the lag of the autocorrelation and m << ¢. The following lemma then hold in this study.
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Lemma If {x(#)} is i.i. d. and zero-mean,then the autocorrelation of quadratic model

(1) excited by {x(#)} is given by

My(m) =7, > hG DG + myi + m) + 7 Z Z A, z)h(],])
i=0 i= ]¢,+m

q—m g—m

+ 4720 DG DG + m,j + m). ‘ (3)°

im0 j=it1
Proof For i.i.d. random signals {x(#)}, one can prove the following properties

E[x(ll)l‘(tz)f(ts)x(t«i)]
Vs 1 =1, =13 = Iy,

(4)
=7 =1 #ts = 1,501 by = by F5 by = 15,01 &) = I #tz =14,
0, otherwise.
a) For ¢ = j terms of Equ. (1) ,the following polynomial can be extended as
q q
E{[ D G D (¢t — DI kG a2 +m — D7)
i=0 i=0
q—m q q
=YL D2 hGDRG + myi 4+ m) + YLD S hGL,DRG, ). (5
i=0 i=0 j=0
JFEi+m

b) For i 7 j terms of Equ. (1), with polynomial multiplication formula and Equ. (4) in

mind we obtain

E[Z Zh(z,])x(t — Dzt — ])][ZZh(z Dt +m—Dxt +m — j)]

i=0 j= i=0 j=0
= 47} ZZh(z,]>h(z+m,1+m>, i . )
i=0 j=i+1

By combining Equ. (5) and Equ. (6) we get the desired autocorrelation expression for nonlin-
ear model(1).

In virtue of the features of the model kernels, Mj(m) % 0 only for {h(: 51t +m<q,
J +m < g¢}. Additionally,some of the nonzero My (m) are identical according to the symme-

tries of autocorrelations. Therefore, (3) gives (¢ + 1) equations which include

g+ D+ 2)
2

solution of the identified model kernels. As we know,a leading idea of our framework for

unknown parameters. Obviously the important question herein is the unique

model 1dent1f1catlon should be that the effort spent in developing a model of a system must be
related to the application it is going to be used for. The quadratic approximation to the non-
linear model under investigation aims at obtaining an accurate identification target in prefer-
ence to the linear approximation'). Therefore certain truncated quadratic models may be suf-
ficiently suitable for the engineering practice and the proposed underdetermined equation (3)
can be transformed into a determined or overdetermined equation which has the unique solu-
tion. In this study the following least-squares (LS) cost function and the steepest descent
strategy is addressed to solve the problem.
q
J = —Z-EMgon) — 74IZ):h(i,i)h(i + m,i 4+ m) — ygzzq] >URGDRG D

i=0 j=0
JFEitm
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gq—m q—m .
— AV D D TRGDRG Fmyj+m) T, D
i=0 j=i+1
. - aJ .
h(z,]),,H:h(l,]),,h?]m, Z,]:O,I,"',q (8)

where 7 denotes the step-size parameter which satisfies 0<{7<(1. It is worth noting that the
above mentioned autocorrelations involve expectation operations. They cannot be computed
in an exact manner from available real output signals,but can be approximated consistently
by replacing expectations by sample averages,e. g. ,

M(m) = ]—\%—Zy(t)y(t +m) (9

2ica )
where Ngis the number of samples in region £ . We substitute M3 (m) of Eqn. (7) by the esti-

mated autocorrelations M3 (m) in (9) to identify the quadratic kernels.
3 Simulations
In the experiment,the following two truncated quadratic models are simulated by com-

puters. '

y(@®) = 2@ — 1.622%¢ — 1) + 1. 4122¢ — 2), .

Y@ =7 44z — D + 1.522¢ — Dalt — 2) + 3. 722zt — 2).
As general ,an independent exponentially distributed random sequence {x(z)} with zero-mean
is generated as the input signal. To estimate the autocorrelations in (9) we use 1024 output
samples which are computed by convolving the random input signals with the given models.
In case of noisy output observations, available output signals are Yo () = y(&) + n(2),

where 7(2) is a sequence of Gaussian noises which is independent of the model output y(z) .-

2
The signal-to-noise ratio (SNR) is defined as SNR= 10 loglo(%) =50 dB. To verify the the-
2n

oretical results, 50 Monte-Carlo runs are used and the value used for the step-size parameter
7 is supposed to 0. 1 herein. Table 1 and Table 2,which respectively summarize the estimated
model kernel means and variances by using the methodology developed in Section 2 compared
with their corresponding true values,show that the mean values are quite accurate estimates
of the model kernels with small estimating variances.

Table 1 True and estimated (means = variances) Table 2  True and estimated (means - variances)

kernels of the quadratic model under SNR kernels of the quadratic model under SNR
= 50 dB and 50 Monte-Carlo runs for = 50 dB and 50 Monte-Carlo runs for
model 1 model 2
hC0,0) A(1,1) h(2,2) h(0,1) A(1,2) h(0,2)
true values 1 —1.62 1.41 true values 3.72 0.76 1. 86
. 0.9914 . 3.7102 _
estimated A4 (0,0) 40. 0628 — estimated A (0,1) +0.00913
. . —le213 . o761l
estimated 2 (1,1) +0. 0891 estimated 2 (1,2) 40.1014
. . 8588
estimated 2 (2,2) - — 1. 4071 estimated 2 (0,2) — - 185

+0. 0448 4+0. 0987
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4 Conclusion
The algorithm for blindly identifying truncated quadratic nonlinear models based on
model output statistics is derived. It is indicated that the proposed technique is accurate and

very general which can be applied to the practical identification engineering.
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