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Some new results on chaos synchronization
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Abstract: Some new criteria on chaos synchronization are derived, which further improves the results obtained in the lit-
erature . It offers some fairly simple algebraic conditions that are very easy to verify for chaos synchronization.
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1 Introduction

Chaos synchronization has been the topic of intensive
research in the past decade (see, e.g.,[1~12] and the
references therein). One common approach to chaos
synchronization is to reformulate it as a ( generalized)
Lur’ e system and then discuss the absolute stability of its
error dynamics [4,7 ~ 10].

This paper aims to improve the results of [4], and
offers some fairly simple algebraic conditions that are
very easy to verify, on the basis of the authors’ recent
investigations [9, 10]. The basic idea supporting this
study is based on the fundamental theory and techniques
developed in the nonlinear systems literature [13,14].
2 Chaos synchronization as stabilization

Consider a uni-directional feedback-controlled chaos
synchronization system in the following form:

%ﬁ =Ax + f(qix,",q %, )(be" -
I cb™) x (drive),

d
:ilt =Ay + f(qlx, ", g x,t)(beT -

K{(x - y) (response),

by -

(1)
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where x(2),y(t),q;,b,c ER*,i =1, ,r<n,A,
K€ R™ and f€ C[R x [t5,%),R]. Let the syn-
chronization error be

e =x—y. (2)
Then, system (1) can be reformulated as
% = Ae +f(qfx,"',qTx,t)(bcT -

cbe + Ke. (3)
The objective is to choose the constant feedback gain
matrix K, such that e(z) —0as ¢t — =, thereby achiev-
ing synchronization y(t) = x(t) ast > .
The following is main result of [4]:

Suppose that f is bounded for any
bounded variables, and that there exists a symetric and
positive definite matrix P such that

(A+K)"P+ P(A+K) <0,

B"P + PB = 0,
where B = be” — ¢b”, in which b and ¢ are linearly in-

Theorem 1

(4)

dependent. Then, the zero solution of system (3) is
globally asymptotically stable, so that system (1) syn-
chronizes.

A few remarks about Theorem 1 are in order.
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First, for the purpose of synchronization, under con-
ditions (4), the boundedness of the function f(-) is re-
dundant as can be seen from the detailed discussion given
in the next section.

Second, the matrix B = bcT — ¢b” is a very special
asymmetric matrix, so that the second quation in (4) al-
ways has a solution (e. g., the identity matrix or a
block-diagonal matrix) . As a result, by selecting an ap-
propriate gain matrix K, the matrix inequality in (4) is
always solvable.

3 Main results of the present paper

Two questions are addressed in this section:

1) How to simplify the conditions given in (4) of
Theorem | above?

2) If cdnditions (4) are not satisfied, how to select a
suitable feedback gain matrix K to ensure the synchro-
nization?

Theorem 2 Suppose that vectors b and ¢ are lin-
early independent. Then

i) If every column of matrix B has a nonzero element
b; 7 0, then the matrix question in (4) can only have
solutions of the foorm P = A, withA > 0.

i) If
B - [ Orxr Orx(n—r) ]
O(n-ryxr B(ar)x(n=r)
and every column of the submatrix B(,_,)x(s-r) has a
nonzero element b; = 0, then a solution of the matrix

equestion in (4) can be simply chosen as

Pr T Orx(n-r)
P[ g ] ,
O(n—r)xr I(nryx(n-r)

in which P,,, is a symmetric and positive definite con-
stant matrix.

Proof Since B = bc™ — ¢b”, one has

BT = — beT 4+ cbT = — (bcT - bT) = - B,

implying that B is a skew-symmetric matrix satisfying B
+ BT =o0.

In applying the mathematical induction argument,
start from n = 2:

B = [Z;][cl e2] - [:][bl by] =

[ 0 b1C2 — Clb2] [ 0 blZ]
Clbz - blcz 0 " - b12 0 )

Since b and ¢ are linearly independent,

1 €2
det b, b, # 0o
bica — c1by # 0 by # 0.
Consequently,

B'"P + PB = 0 &
- BP + PB =0« BP = PB.
The last equality gives
- Prbi = bppp=pr2 =0,
brpu = bpepn =pu = pn =41 >0.
Without loss of generality, take A = 1 in the following.
Thus, whenn = 2, one has P = I,.
Next, assume that the claim is tue for n — 1, and
consider the case of n. In this case, BP = PB, with
their special forms obtained in the case of n — 1, yields

0 bp by blnw
- bz 0 by ot b,
-by -bn O b, |*

- - bln - b2n 0 0

Pu P2 Pz T Plnw
P12 1 o - 0
pa 0 O 0 |=

Lpy, O O - 1

[Pu Pz P13 " Pla]

P12 1 0 eas 0
P13 0 0 0 o

'Pln 0 0 P 1 i

0 bp by blnw
- by 0 by o by
-by -bn O ba, |-

L - by, —b O -+ 0O

By comparing corresponding elements, one obtains P =
I,, as claimed in Part i) of the theorem.

Part ii) of the theorem can be similarly verified, com-
pleting the proof of the theorem.

Note that since P = I, is always a solution of the sec-
ond Eq. of (4), conditions in (4) can be simplified to
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be
(A+K)T+(A+K) <O (5)

Theorem 3 In system (1), let A, be the largest
eigenvalue of the matrix [A + AT]. If A, < O then one
can choose K = 0, namely, no feedback is needed in or-
der to achieve synchronization. If A, = 0, then one
may choose K = pl, with 2 < - A, to achieve syn-
chronization.

Proof When A, < 0, let K = 0. Then

(A+K)"+(A+K)=AT+4 <o0.

When Ay = 0, let K = pf,. Then,
sT[(A+K)T"+(A+K)]x =
2T(AT + A)x + (KT + K)x <
Amx® % + 22 % < 0,

for x = 0if 2 < — A, This completes the proof of

the theorem .

It is well known that for n - 1, computing the eigen-
values is a very difficult task. The following criterion is
easier to use.

Theoremd4 LetH = A + A" = [hy],,. Define

n

L=max 2, |hl.

igisn | 57
IfK = ,u],, With2,u + h,',' < - L(i = I,"',n), then
conditions (4) must be satisfied, implying synchroniza-
tion of system (1).
Proof Since
(A+K)+{(A+ KT =(A+A") +2ul,

one has

20 4+ hi = 2p +2a; <-L =

— max i | hyl, i =1, n.

Igisn j g 5oy

According to the JGe:hgoﬁn Theorem, the eigenvalues
of the matrix (A + K) + (A + K)T are located on the
left-half of the complex plane, so that the symmetric
matrix (A + K) + (A + K)"is negative definite. There-
fore, conditions (4) are satisfied, implying synchroniza-
tion of system (1). This completes the proof of the the-
orem.
4 Multi-variable systems

As a further generalization of the above study, con-
sider the following synchronization problem of a multi-

variable system:

% = Az + Zfi(q}-x,“',qfx,t) .
i=1
(bl - D (drive),
P
d m
d_f = Ay + 2, filqTx, . qTx,1)(bel - cdDy -
i=1

y K(x - y) (response),

(6)
where x(t),y(t),qi,b;,¢; € R*,i = 1,,r < n,
A, KER™, and f; € C[Rx [19,%),R],j =1,

m.

As before, let the synchronization erorbe e = x — ¥
and then consider the synchronization error dynamics

% =(A+Ke+ 2, f(qlx,,q"x,t)Be,
i=1

(7
where B; = be! - ¢bT,i = 1,--+, m. The following re-
sult was obtained in [4], with slight corrections given
here :

Theorem 5 A sufficient condition for synchroniza-
tion of system (6) is that for any functions f; there exists
an n x n constant matrix P = PT > 0 such that

(A+K)"P+P(A+K) <O,
PB; + B'P = 0.

Note that according to Theorem 3 above, the second
Eq. in (8) always has a solution, e.g., P = I,. By
using this solution and suitably choosing a K, the matrix

(8)

Ineq. in (8) can always be satisfied. The following
gives a much simpler criteron under which condition
(8) is satisfied.

Theorem 6 In system (6), let A, be the largest
eigenvalue of the matrix [A + AT]. If A, < O then one
can choose K = 0, namely, no feedback is needed in or-
der to achieve synchronization. If A, = 0, then one
may choose K = ul, with2p < — A to achieve syn-
chronization.

Proof Consider the Lyapunov function V = e'e.
When A < 0, let K = 0. Then

dv

& ’(7) =e(A+K)T+ (A4 +K)]e

4

Dfi(g%, . qTx,t)e™(B; + BNe =
i=1

(A + K"+ (4+K)]e
e™(A + ATe < 0,
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for all e 2 0.

When A, = 0, let K = pl, with 2 < — A,
Then, the largest eigenvalue of [(4 + K)T + (4 + K) ]
is strictly negative, so that

dv
dt | (7

=e"(A+K)T+(4+K)e <0,

for all e ¢ 0. This completes the proof of the theorem.
Theorem7 LetH = A + AT = [hj], .. Define

L=max >, |h;l.

Isisn ;17
K = pl, with2p + hy <- L(i = 1,-:-,n), then
conditions (8) must be satisfied, implying synchroniza-
tion of system (6) .
Proof It follows from the properties of the M-ma-
trix that if
20+ hy; = 2p +2a; <-L =

| hjl, i=1,",n,

then the matrix (A + AT) + 2ul, < 0, implying that
conditions (8) are satisfied. Thus, system (6) synchro-
nizes, and the proof of the theorem is completed.
5 Some illustrative examples

Example 1 Consider the following system:

_2 3 41

dz | 3 -2 46

&t |23 2 1 3|""
6 -2 20

flqTx,q3%,t)(bc™ - cbT)x,
where f(+) and b, ¢, ¢, g, are not important in the pre-
sent discussion. Since

-4 6 1 7
T 6 -4 6 4
H: = A+ A4 =
1 6 2 5
7 4 5 0
is not negative definite, according to Theorem 4,

4

» Lhil, 23 1hyl}=

4
L=max{> I hl,
i=2 j=ljn2 j=1.jm3

max {14,16,12,16} = 16.
When 2y +2 < — 16 namely ¢ < -9, one has2 + u +
h; <-16,i = 1,2,3,4. Therefore, if one takes ;2 =
- 9.1sothat K = —9.11,, then the matrix (4 + K) +
(A + K)Tis negative definite, implying that the coupled
system synchronizes .

Example 2 Consider a system with

2 -3 5
A=|:4 1 2],b=[011]T,
-4 2 -1
c=[0 1 0]7, f(+,2) = 2u(s),
where u(t) is a control input signal. With P = I;and K
= - 2.515, the matrix (A + K) + (A + K)Tis negative
definite, so as result, the coupled system of this model
will synchronize.
Example 3 Consider the following system:
-2 3 -4
g—’: =l 4 2 2 :Ix +
-4 2 0

[ -2 1
filgiz,g3x,t)| 2 0 —1]x+
-~ 1 1 0

Y 1 2
filglx,qlx, )l -1 0 - 3]x.
-~-1 3 0]

Since

-4 7 -8
H;=A+AT={7 4 4]

-8 4 O
is not negative definite, and both B; and B, are skew
symmetric, and

3 2

3
L=max {2 L hjl, 2 VLh;l,>5 | hyl}
i=2 i=

Lje2 j=1

max {15,11,12} = 15.

If2u + hy < —15then x < - 19/2. So, if one takes
= — 10 so that K = — 1015, then the matrix (4 + K) +
(A + K)T is negative definite. Hence, Theorem 7 im-
plies that the coupled system synchronizes.
6 Concluding remarks

A common philosophy in the study of chaos control
and synchronization today is trying to either construct a
special Lyapunov function or to solve a system of linear
matrix inequalities. As has been widely shown, both can
be quite implicit and indeed technically difficult. This
paper improves the results of [4], and offers some fairly
simple algebraic conditions that are very easy to verify.
It is believed that more efforts should be devoted to sim-
pler design so as to obtain more feasible structures and
conditions in the future investigation of chaos control and
synchronization, as has been tried in [9,10].
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