
第 34 卷第 6 期
2017 年 6 月

控 制 理 论 与 应 用
Control Theory & Applications

Vol. 34 No. 6
Jun. 2017

多多多重重重约约约束束束非非非负负负矩矩矩阵阵阵分分分解解解的的的非非非平平平稳稳稳噪噪噪声声声语语语音音音增增增强强强

DOI: 10.7641/CTA.2017.60600

邹月娴†, 刘诗涵, 王迪松
(北京大学信息工程学院现代信号与数据处理实验室, 广东深圳 518055)

摘要: 低信噪比非稳态噪声环境中的语音增强仍是一个开放且具有挑战性的任务. 为了提高传统的基于非负矩

阵分解(nonnegative matrix factorization, NMF)的语音增强算法性能, 同时考虑到语音信号的时频稀疏特性和非稳态

噪声信号的低秩特性, 本文提出了一种基于多重约束的非负矩阵分解语音增强算法(multi-constraint nonnegative
matrix factorization speech enhancement, MC–NMFSE). 在训练阶段, 采用干净语音训练数据集和噪声训练数据集分

别构建语音字典和噪声字典. 在语音增强阶段, 在非负矩阵分解目标函数中增加语音分量的稀疏性约束和噪声信

号的低秩性约束条件, MC–NMFSE能够更好地从带噪语音中获得语音分量的表示, 从而提高语音增强效果. 通过实

验表明, 在大量不同非平稳噪声条件和不同信噪比条件下, 与传统的基于NMF的语音增强方法相比, MC–NMFSE
能获得较低的语音失真和更好的非稳态噪声抑制能力.
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Enhancing speech corrupted by nonstationary noise using
nonnegative matrix factorization with multiple constraints

ZOU Yue-xian†, LIU Shi-han, WANG Di-song
(Advanced Data & Signal Processing Laboratory, School of Electronic and Computer Engineering,

Peking University, Shenzhen Guangdong 518055, China)

Abstract: The enhancement of speech corrupted by nonstationary noises under low signal-to-noise ratio (SNR) con-
ditions is remaining open and still a very challenging task. To improve the traditional nonnegative matrix factorization
(NMF) based speech enhancement, jointly taking the speech sparsity property in time-frequency domain and the low-rank
property of nonstationary noise into account, a termed multi-constraint NMF speech enhancement method (MC–NMFSE)
is developed. Essentially, in training stage, the speech and noise dictionaries have been constructed by using speech and
noise training sets, respectively. In the speech enhancement stage, multi-constraint NMF method is adopted where the data
matrix is factorized into two nonnegative sub-matrices with the sparsity and low rank constraints to guarantee the good rep-
resentation of the speech components from their corrupted version by nonstationary noise. Compared with the traditional
NMF speech enhancement method (NMF–SpEnM) and MC–NMFSE, intensive experiments under different nonstationary
noise conditions and different signal-to-noise ratios have been carried out to evaluate their performance. Experimental
results demonstrate that MC–NMFSE has lower speech distortion and better capability to suppress nonstationary noises.
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1 Introduction
Enhancing speech from a degraded signal record-

ing is an important task in many speech applications,
such as hearing aids, speech recognition, speaker verifi-
cation/identification, speech emotion classification and
so on. Various speech enhancement algorithms, e.g.,
statistical spectral subtraction (SS)[1–2], the minimum
mean square error (MMSE)[3–5] have been proposed to
enhance the speech corrupted by stationary or quasi-
stationary noise. There are few research outcomes have
been reported to deal with speech enhancement with

non-stationary noise conditions[6]. Moreover, it is al-
so noted that the traditional speech enhancement meth-
ods have limited capability to suppress nonstationary
noise, especially when signal-to-noise (SNR) is low.
Recently, there are some research developments focus
on using deep neural network (DNN)[7] and nonneg-
ative matrix factorization (NMF)[8–10] to enhance the
speech quality. Obviously, DNN has been well-known
being a deep multiple-layer architecture with a large
number of parameters to tune. As a result, a large
training data is needed for well train DNN model[11].
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Compared with DNN-based speech enhancement meth-
ods, NMF-based speech enhancement methods (NMF–
SpEnM) asks much less training data meanwhile offers
a good capacity to represent speech components from
the noisy speech[12]. It essentially factorizes the speech
data and noise data respectively into two nonnegative
sub-matrices, termed as the corresponding dictionary
matrix and the encoding matrix in the training phase.
And they are then employed to factorize the input noisy
speech and determine the enhanced speech[13].

However, after examining the experimental results
of the NMF–SpEnM, we found that the performance
of the NMF–SpEnM degrades with the decrease of the
SNR. The main reason lies on the fact that NMF–
SpEnM is developed assuming the subspaces of speech
and noise are uncorrelated. When SNR goes down, this
assumption is not valid, especially when SNR is lower
than 5 dB.

In this study, we strive to improve the perfor-
mance of NMF–SpEnM under non-stationary noise and
low SNR conditions. From signal processing perspec-
tive, NMF is a powerful mathematical tool and can be
taken to solve real-world problems if there are some
application-related domain knowledge. Previous stud-
ies reveal that speech has certain sparse property[14] and
non-stationary noise shows low-rank property at time-
frequency representation[15]. Based on these findings,
we are seeking the proper nonnegative matrix factor-
ization method jointly considering the speech sparsi-
ty and low rank of non-stationary noise. Specifical-
ly, the enforcement of the speech sparsity promotes the
effective representation of speech by using few coeffi-
cients. Meanwhile, the rank-regularized term enforces
the low-rank structure of non-stationary noise. As a re-
sult, a novel multi-constrained NMF speech enhance-
ment (MC–NMFSE) algorithm is derived. To evalu-
ate the performance of our proposed MC–NMFSE al-
gorithm, intensive experiments have been carried out.
The experimental results also demonstrate the improved
speech enhancement performance. The details will be
given in Section 3.

The organization of the rest of the paper is as fol-
lows. The NMF–SpEnM algorithm and the proposed
MC–NMFSE algorithm are presented in Section 2. Sec-
tion 3 illustrates the experiments and their results, and
the conclusion is given in Section 4.

2 Multi-constraint nonnegative matrix fac-
torization speech enhancement approach
To make the presentation clear, the basic principle

of NMF, speech enhancement based on NMF (NMF–
SpEnM) and our proposed multi-constraint NMF based
speech enhancement (MC–NMFSE) algorithm will be
presented in details, then we discuss the complexity of
MC–NMFSE algorithm.

2.1 Nonnegative matrix factorization (NMF)
In this subsection, the principle of NMF will be giv-

en. Essentially, NMF is a matrix factorization tech-
nique which factorizes one nonnegative input matrix
V (V ∈ Rm×n) into two matrices W (W ∈ Rm×r)
and H(H ∈ Rr×n) with nonnegativity constraints,
which can be denoted as follows:

V ≈WH, W ,H > 0, (1)

where the matrix W is termed as a dictionary matrix
or a basis matrix, while the matrix H is termed as the
weighting matrix. r is the rank of factorization, which
is chosen to be smaller than m and n. For basis ma-
trix W , each column represents a basis vector. For the
weighting matrix H , each row represents their weight
in each column of the input matrix V . Alternatively, in
terms of column-wise approximation, we can get

vi ≈Whi, (2)

where vi is the ith column of v, hi is the ith column
of H . From (2), we can see that each input vector vi

is a linearly representation by the basis matrix and its
corresponding weight coefficients.

Mathematically, NMF performs the decomposition
by minimizing the following cost function:

minD(V ,WH),

s.t.W > 0, H > 0, (3)

where D(·) is a defined as a distance matric which mea-
sures the distance between two nonnegative matrices V
and WH . An iterative approach can be used to ob-
tain the optimal solution of (3). Besides, the initializa-
tion is performed using positive random initial condi-
tions for matrices W and H . Moreover, the conver-
gence of the process has also been proved. It is easy
to see that, from (3), choosing different distance met-
ric D(·) will lead to different matrix factorization, dif-
ferent approximation of matrix V , dictionary W and
coding matrix H . There are several commonly used
D(·) functions, such as L1, L2, earth mover’s dis-
tance (EMD), and Kullback-Leibler divergence (KLD).
Some research outcomes have shown that the KLD is
proved to give a better performance in speech applica-
tions compared with other distance metrics[12]. Hence,
in this study, we only consider using KLD as the NMF
distance matric which has the following expression:

D(V ||WH) =∑
ij

(Vij log
Vij

(WH)ij
− Vij + (WH)ij). (4)

It is noted that KLD is lower bounded by zero, and van-
ishes if and only if V = WH . Minimizing KLD cost
function in (4), the multiplicative update rule has been
adopted since it gives good compromise between con-
vergence speed and the implementation of Kullback-
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Leibler divergence[13]:

Wia ←Wia

∑
µ

HaµViµ/(WH)iµ∑
v

Hav

, (5)

Haµ ←Haµ

∑
i

WiaViµ/(WH)iµ∑
k

Wka

. (6)

2.2 NMF based speech enhancement
Speech enhancement is intended to recover the

clean speech s(t) from its corrupted version x(t). Con-
sidering additive noise, x(t) is given by

x(t) = s(t) + n(t). (7)

Taking short-time fourier transform (STFT) on Eq.(7),
we obtain the corresponding data model in the time-
frequency domain as

V ≈ Vs + Vn, (8)

where Vs, Vn, and V are the spectra magnitude matrix
of clean speech, noise, and noisy speech, respectively.
It is noted that for the non-stationary noise, Vn has a
low rank[15]. Obviously, Vs, Vn, and V are all nonneg-
ative matrices and the NMF technique can be employed
to represent these matrices. Then factorization Vs, Vn,
and V by (4), we have

V = WH, Vs = WsHs, Vn = WnHn,

respectively As a result, (8) can be expressed as follows:

V ≈WH=WsHs+WnHn=[Ws Wn]

[
Hs

Hn

]
.

(9)

According to (9), it is clear that factorizing the input
data matrix V by NMF yields both W and H . From
the last term of (9), we can see that if Ws and Wn are
determined in the training stage for properly represent-
ing information of speech and noise, then in the speech
enhancement stage, with the input data matrix V and
constructed basis matrix W = [Ws Wn], the weight-
ing matrix H can be determined by NMF to properly
represent the weighting coefficients. As a result, Hs

and Hn. can be obtained from H . Therefore, the en-
hanced speech component Vs in (8) is reconstructed by

V̂s = WsHs. (10)

The block diagram of the NMF based speech en-
hancement (NMF–SpEnM) algorithm is shown in Fig.1.
Clearly, NMF–SpEnM has two stages. In the training
stage, Ws and Wn are trained separately with training
speech dataset and training noise dataset, respectively
with the same NMF procedure. In the speech enhance-
ment stage, the input data matrix V is factorized by NMF
with trained W = [Ws Wn] to generate the coefficient
matrix H . As shown in (9), the coefficient matrices Hs

and Hn can be computed from the generated H .

Fig. 1 Block diagram of the proposed MC–NMF speech
enhancement method

Researchers have observed that the enhanced
speech by (10) may suffer from the speech distortion.
In order to improve the intelligibility of the enhanced
speech, an indirectly speech enhancement method has
been proposed, where an ideal ratio mask (IRM) is typ-
ically generated according to the following formula-
tion[16]

M =
WsHs

WsHs +WnHn

. (11)

In Eq.(11), Ws and Wn have been obtained in the train-
ing stage. Hs and Hn are computed in the speech en-
hancement stage. It is noted that the estimated mask M
indicates a ratio of speech component to the received
signal at each time-frequency point (τ, f). Analyzing
(11) and (8) gives following observations: 1) when no
additive noise at (τ, f), M(τ, f) equals one; 2) when
the noise dominates (τ, f), that is Vn is much larger
than Vs, or WnHn is much larger than WsHs, then
M(τ, f) is much smaller than one or approaches zero.
As a result, an enhanced spectrogram Venhanced can be
computed as

Venhanced = V ⊗M . (12)

As discussed above, with (12), the signal at speech-
dominant (τ, f) is remained almost unchanged since
M(τ, f) equals or approximates to one. However,
the signal at noise-dominant (τ, f) is suppressed since
M(τ, f) is approaching zero with the decrease of the
SNR. At last, the inverse FFT (i-FFT) is employed to
reconstruct the enhanced speech signal in time domain
using Venhanced and its phase computed from noisy
speech.
2.3 Proposed multi-constraint NMF speech en-

hancement method
In our previous work[17], the time correlation of

speech signal is used to train an expressive speech dic-
tionary using NMF technique. It is encouraged to see
the improved speech enhancement performance. In this
subsection, we propose a novel multi-constraint NM-
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F based speech enhancement (MC–NMFSE) algorith-
m which considered the characteristics of both speech
and noise to guarantee the effectiveness representation
of the speech components corrupted by nonstationary
noise.

Research shows that NMF tends to return a spar-
se and part-based representation of speech spectro-
gram[18]. However, sparsity in NMF occurs as a by-
product due to nonnegativity constraints, rather than be-
ing designed objectively. As a result of that, the spar-
sity is not actually taken full use of. In our study, con-
sidering the sparsity of speech spectra magnitude ma-
trix Vs(WsHs) and the low-rank of the non-stationary
noise spectra magnitude matrix Vn(WnHn), the NMF
factorization model can be written as:

minD(V ,WsHs +WnHn),

s.t. ∥Hs∥0 < k1, ∥WnHn∥∗ < k2, (13)

where D(·) represents KL divergence shown in equa-
tion (4), ∥ · ∥0 is l0 norm and ∥ · ∥∗ refers to the nuclear
norm of the matrix, which is the summation of its sin-
gular values, which is a proxy for minimizing the rank
of Vn

[15]. k1 and k2 are constant parameters to control
the degree of sparsity and rank. With the sparsity and
low-rank constraints, the model (13) is able to estimate
the speech and noise components more accurately. It is
clear that the optimal solution in (13) is NP-hard task.
Alternatively, the desired Hs can be efficiently comput-
ed by minimizing the l1 norm instead of l0 norm. Then,
using augmented Langrangian technique, (13) can be
reformulated as

min D(V ,WsHs +WnHn) +

λs∥Hs∥1 + λn∥WnHn∥∗, (14)

where λs and λn are termed as the speech sparsity regu-
larization parameter and the low-rank of noise regular-
ization parameter, respectively. Research in [19] shows
that the sum of the Frobenius norms of the nonnega-
tive matrix W and H gives upper bound on the nuclear
norm of their product as

∥WH∥∗ 6 1

2
∥W ∥2F +

1

2
∥H∥2F. (15)

Therefore, the cost function shown in (14) can be
rewritten as

min D(V ,WsHs +WnHn) +

λs∥Hs∥1 +
λn

2
∥Hn∥2F, (16)

where the ∥Wn∥F is omitted since it has been pre-
trained and fixed, and the parameter λs and λn are set
following[20], shown as:

λs =
√
2Nσ, λn =

√
2σ, (17)

where N represents the number of frames in noisy spec-
trogram, σ represents mean square error of the noisy
spectrogram matrix. Such a setting guarantees that if

the noisy speech data V consists of n frames of zero-
mean white noise of variance σ2, then both WsHs and
WnHn are zero[19]. Another advantage of this setting
is that the regularization parameters are set as data de-
pendent instead of an empirical value. As seen in Eq.
(9), H = [HT

s HT
n ]

T, assuming that the dimension
of Hs and Hn are rs × n and rn × n respectively, then
r = rs+rn, where r is the number of rows of H . Simi-
lar to [21], through gradient descent method[13], the fol-
lowing update rules are a good solution of problem (16).

Theorem 1 The cost function in Eq.(16) is non-
increasing under the update rules

Haµ←Haµ

∑
i

[WiaViµ/(WH)iµ]∑
k

Wka + λs

, 16a6rs, (18)

Haµ ←
−
∑
k

Wka

2λn

+√
(
∑
k

Wka)
2+4λnHaµ

∑
i

WiaViµ/WH iµ

2λn

,

a>rs. (19)

The divergence is invariant under these updates if and
only if W and H are at a stationary point of the diver-
gence. To prove Theorem 1, we firstly introduce the
auxiliary function and one lemma that has been proved
in [13].

Definition 1 G(h, h′) is an auxiliary function
for F (h) if the conditions hold

G(h, h′) > F (h), G(h, h) = F (h). (20)

Lemma 1 If G is an auxiliary function, then F
is nonincreasing under the update

ht+1 = argmin
h

G(h, ht). (21)

As discussed in [13], by iterating the update in
Eq.(21), a sequence of estimates that converge to a local
minimum hmin = argminh F (h) can be obtained:

F (hmin) 6 · · · 6 F (ht+1) 6
F (ht) 6 · · · 6 F (h1) 6 F (h0). (22)

Then we have the following Lemma that can be easily
proved as follows[13]:

Lemma 2 Define

G(h, ht) =
∑
i

(vi log vi − vi) +
∑
ia

Wiaha −

∑
ia

vi
Wiah

t
a∑

b

Wibh
t
b

(logWiaha) +

∑
ia

vi
Wiah

t
a∑

b

Wibh
t
b

(
Wiah

t
a∑

b

Wibh
t
b

) +

λs

∑
16a6rs

ha +
λn

2

∑
rs6a6r

h2
a. (23)
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This is an auxiliary function for

F (h) =∑
i

[vi log(
vi∑

a

Wiaha

)− vi] +
∑
a

Wiaha +

λs

∑
16a6rs

ha +
λn

2

∑
rs6a6r

h2
a. (24)

At last, we give the proof of Theorem 1 as follows:
Proof The minimum of G(h, ht) with respect to

h is determined by setting the gradient to zero, when
1 6 a 6 rs, we have

∂G(h, ht)

∂ha

= −
∑
i

vi
Wiah

t
a∑

b

Wibh
t
b

1

ha

+

∑
i

Wia + λs = 0. (25)

Thus the update rule of Eq.(21) takes the form

ht+1
a =

ht
a∑

b

Wkb + λs

∑
i

viWia∑
b

Wibh
t
b

. (26)

When rs 6 a 6 r, we have
∂G(h, ht)

∂ha

= −
∑
i

vi
Wiah

t
a∑

b

Wibh
t
b

1
ha

+

∑
i

Wia + λnha = 0. (27)

Considering the nonnegative of ha, the update rule of
Eq.(21) takes the form

ht+1
a =

−
∑
k

Wka

2λn

+√
(
∑
k

Wka)
2
+4λn

∑
i

viWiah
t
a/

∑
b

Wibh
t
b

2λn

.

(28)

Since G is an auxiliary function, F in Eq.(24) is nonin-
creasing under these updates. Rewritten in matrix form,
Eqs.(26) and (28) are equivalent to the update rules in
Eqs.(18) and (19). With the solution of Eq.(16) ob-
tained via Eqs.(18) and (19), the noisy speech can be
denoised, and our proposed algorithm can be divided
into the training stage and enhancement stage.

In the training stage: 1) Convert the training clean
speech data and noise data into time-frequency (TF)
domain by STFT. Take the magnitude spectra of the
speech frames and noise frames to form the input da-
ta matrix V ; 2) Compute Ws and Wn by NMF using
cost function shown in Eq.(3) and update equations in
(5) and (6).

In the enhancement stage: 1) Convert the noisy
speech data into TF domain by STFT, keep phase com-
ponents unchanged and take the magnitude spectra of
the noisy speech frames to form the input data matrix
V ; 2) Construct W by using the trained dictionaries

(W = [Ws Wn]); 3) Compute H by MC–NMF cost
function shown in Eq.(16) and update equation in (18);
4) Separate H to get Hs and Hn; 5) Compute the mask
(IRM) M by Eq.(11); 6) Compute the enhanced speech
from the noisy spectrogram by Eq.(12).
2.4 Complexity analysis of MC–NMFSE algo-

rithm
Assuming that the noisy speech signal is trans-

formed into κ frames, and the length of STFT is χ. By
using the fast fourier transform (FFT), the time com-
plexity of calculation for each frame can be denoted as
O(χ logχ), thus the time complexity of FFT calcula-
tion for κ frames is O(κχ logχ). Besides, assuming
that the number of atoms in speech and noise dictio-
nary are k1 and k2 respectively, and the number of up-
dates of (18) and (19) is τ . Then the time complexity
for solving problem (16) is O(τk1κχ) + O(τk2κχ),
which can be denoted as O(κχ) since τ, k1 and k2
are constants. Once the enhanced spectrogram is ob-
tained, Venhanced should be transformed into time do-
main. Similar to the FFT, the time complexity of inverse
FFT is O(κχ logχ). Therefore, the time complexity of
MC–NMFSE algorithm is

O(κχ logχ) + O(κχ) + O(κχ logχ) =

O(κχ logχ). (29)

3 Experiments
Several experiments are conducted in this subsec-

tion to evaluate the performance of the proposed MC–
NMFSE algorithm.
3.1 Dataset and parameter setting

In order to evaluate the performance of the proposed
MC–NMFSE algorithm in different language condi-
tions, TIMIT[22] database the most widely used English
database in speech enhancement and the CCTV news
database of Mandarin are used. Three types of non-
stationary noise from NOISEX–92, namely, machine-
gun, subway, destroyerops, are taken as noise sources.
Noisy signals are obtained by mixing a sentence with
one type of noise at −5 dB, −3 dB and 0 dB, respec-
tively. In the training phase, 530 utterances from 630
speakers are randomly chosen, which gives 30 minutes
training speech. The training speech is down-sampled
to 8 kHz with the frame length of 256 samples (32 ms)
and a frame shift of 128 samples. Then it is trans-
formed to 513 dimensions spectra magnitude by STFT
to form the training data set for NMF–type algorithm-
s, which is used to train the speech dictionary matrix
(SDM) Ws. The number of the SDM atoms is set to
40 by empirical value. For each type of noise, a specif-
ic noise dictionary Wn is also trained with NMF using
15 minutes noise signal. And the number of noise dic-
tionary matrix (NDM) atoms is set to 20 by empirical
value. For speech enhancement stage, the testing noisy
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speech dataset is constructed in the same way as to con-
struct the training dataset. Signal-to-noise ratio (SNR),
log-spectral-distance (LSD), and perceptual evaluation
of speech quality score (PESQ)[23] which are the com-
monly used measurements for speech enhancement, are
taken to evaluate the performance of the proposed MC–
NMFSE algorithm as compared with the MMSE[24],
NMFSpEnM and online–BNMF[25] algorithms.
3.2 Experimental results and analysis

Experiment 1 In this experiment, we aim to
evaluate the performance of the proposed MC–NMFSE
algorithm under different language and noise condi-
tions.

First of all, the training and testing speech dataset
are formed by TIMIT database. Three different type of
noises are considered. The SNR, PESQ and LSD per-
formance of the algorithms under different noise and
SNR conditions are shown in Tables 1–3.

Table 1 The SNR, PESQ and LSD results of MMSE,
NMF–SpEnM, online–BNMF and MC–
NMFSE at different SNRs of machine-gun
noise conditions

Measurements
Method

SNR PESQ LSD

MMSE(−5 dB) −4.1303 1.3618 1.8554

MMSE(−3 dB) −2.3688 1.5219 1.7522

MMSE(0 dB) 0.0462 1.6943 1.6188

NMF–SpEnM(−5 dB) 4.6065 1.9788 1.6314

NMF–SpEnM(−3 dB) 5.9006 2.2656 1.4639

NMF–SpEnM(0 dB) 7.7815 2.4609 1.3350

Online-BNMF(−5 dB) 2.0970 1.1307 1.6309

Online-BNMF(−3 dB) 2.1562 1.2764 1.5411

Online-BNMF(0 dB) 2.2746 1.5426 1.4397

MC–NMFSE(−5 dB) 6.7771 2.2341 1.5826
MC–NMFSE(−3 dB) 7.1472 2.5247 1.3830
MC–NMFSE(0 dB) 7.8180 2.6296 1.3118

Table 2 The SNR, PESQ and LSD results of MMSE,
NMF–SpEnM, online–BNMF and MC–
NMFSE at different SNRs of subway
noise conditions

Measurements
Method

SNR PESQ LSD

MMSE(−5 dB) −3.2397 0.7467 2.4764

MMSE(−3 dB) −1.7117 0.8970 2.4134

MMSE(0 dB) 0.4731 1.1312 2.3134

NMF–SpEnM(−5 dB) −0.9765 1.5027 2.3472

NMF–SpEnM(−3 dB) 0.8073 1.6243 2.2668

NMF–SpEnM(0 dB) 2.4859 1.8157 2.1200

Online-BNMF(−5 dB) 1.0499 1.1410 2.2446

Online-BNMF(−3 dB) 1.8764 1.3728 2.0088

Online-BNMF(0 dB) 2.0915 1.6346 1.8813
MC–NMFSE(−5 dB) 1.0588 1.6548 2.1085
MC–NMFSE(−3 dB) 2.4859 1.7841 2.0235
MC–NMFSE(0 dB) 4.3519 1.9693 1.8879

Table 3 The SNR, PESQ and LSD results of MMSE,
NMF–SpEnM, online–BNMF and MC–
NMFSE at different SNRs of destroyerops
noise conditions

Measurements
Method

SNR PESQ LSD

MMSE(−5 dB) 1.1235 1.0349 1.8706
MMSE(−3 dB) 1.9539 1.2028 1.8634
MMSE(0 dB) 3.1093 1.4505 1.8559

NMF–SpEnM(−5 dB) 1.1352 1.7846 2.1092

NMF–SpEnM(−3 dB) 2.7632 1.9100 2.0138

NMF–SpEnM(0 dB) 5.0005 2.0953 1.8541
Online-BNMF(−5 dB) 0.9290 1.0377 2.2403

Online-BNMF(−3 dB) 1.1797 1.1792 2.2278

Online-BNMF(0 dB) 1.7514 1.4026 1.8804

MC–NMFSE(−5 dB) 1.1820 1.7860 2.1309

MC–NMFSE(−3 dB) 2.8081 1.9109 2.0334

MC–NMFSE(0 dB) 5.0587 2.0981 1.8706

From Tables 1–3, it is clear to see that the SNR
and PESQ of the proposed MC–NMFSE algorithm per-
form best under three nonstationary noise conditions
compared with other algorithms, which demonstrates
the powerful denoising ability of MC–NMFSE. As for
the LSD results, our proposed MC–NMFSE outper-
forms other algorithms under machine-gun noise condi-
tions with different SNR levels and subway noise con-
ditions with SNR to be −5 dB and −3 dB as shown
in Tables 1–3, but its LSD performance is inferior to
online-BNMF under subway noise conditions when S-
NR is 0 dB, since the online-BNMF introduces the least
distortion in the enhanced speech signal while perform-
ing moderate noise reduction[25]. Besides, under de-
stroyerops noise conditions, MMSE and NMF–SpEnM
algorithm give the best LSD results when SNRs are
low (−5 dB and −3 dB) and SNR is 0 dB respective-
ly. These results are reasonable because the property
of destroyerops is closer to stationary noise compared
with another two noises. And MMSE is effective for
suppressing stationary noise, but it brought the decrease
of speech quality. From the discussions above, we can
conclude that the proposed MC–NMFSE algorithm out-
performs in nonstationary noise conditions compared
with that of NMF–SpEnM, online-BNMF and MMSE
algorithm. But the performance of the proposed MC–
NMFSE algorithm is comparable in stationary noise
condition compared with that of NMF–SpEnM algo-
rithm and is inferior to that of the MMSE algorithm.

Moreover, in order to evaluate the performance of
the proposed MC–NMFSE algorithm in different lan-
guage conditions, CCTV news database is used. All
experimental settings are keep the same except replac-
ing the TIMIT training dataset by CCTV news database.
The spectrograms of the enhanced speech by different
methods are illustrated in Fig.2. to visualize the perfor-
mance of the MC–NMFSE algorithm. We can observe
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that, compared to the NMF–SpEnM, the proposed MC–
NMFSE algorithm discards more noise components in
low frequency bands. All these experiments validate the
speech enhancement capability of the proposed MC–
NMFSE algorithm under low–SNR and nonstationary
noise conditions.

(a) Spectrogram of the clean speech

(b) Spectrogram of the noisy speech at −5 dB (subway noise)

(c) Spectrogram of the enhanced speech signal by
NMF–SpEnM

(d) Spectrogram of the enhanced speech signal by
MC–NMFSE

Fig. 2 Illustration of speech spectrograms (with CCTV
news database)

Experiment 2 This experiment is carried out to
evaluate the impact of the atoms of SDM and NDM on
the PESQ performance of MC–NMFSE algorithm. It
is noted that the number of dictionary atoms (r) is an
important parameter for NMF-based speech enhance-
ment methods. The experimental settings are the same
as those in Experiment 1 except that we vary r from
20 to 100 in SDM and vary r from 15 to 50 in NDM.
The results are shown in Fig.3. It can be seen that for
SDM, when r = 30, the PESQ reaches highest value
under machine-gun and subway noise conditions. For
NDM, when r = 15 for machine-gun noise and r = 30
for subway noise, the PESQ reaches its highest value.
Besides, when r < 30, the PESQ is not sensitive to
the choice of r. Considering the tradeoff between the
computational complexity and the speech enhancement
performance, we choose to set r as 30 in SDM and set
r as 15 in NDM in our experiments. In Fig.3, The SNR
is set to−5 dB. The up figure shows PESQ versus atom
number of SDM, and the down one shows PESQ versus

atom number of NDM.

Fig. 3 PESQ performance of the proposed MC–NMFSE
algorithm versus number of atoms

Experiment 3 This experiment aims at evaluat-
ing the impact of number of training data frames on
the SNR performance of the MC–NMFSE algorithm.
It is noted that our proposed MC–NMFSE algorithm is
a learning based algorithm. Its performance may vary
with the number of training data frames used. The ex-
perimental settings are the same as those in Experiment
1 except that we vary the number of training data frames
from 30 thousands to 120 thousands. The experimental
results are shown in Table 4.

Table 4 The SNR performance of the MCNMF–SE
algorithm under different number of training
data frame

Number of frames (thousands)
Metrics (SNR)

30 60 90 120

Output-SNR (−5 dB) 7.0578 7.1376 7.0757 7.1421
PESQ (−5 dB) 2.4728 2.4709 2.4939 2.4741

LSD (−5 dB) 1.4461 1.4466 1.4496 1.4379
Output-SNR (−3 dB) 7.4440 7.5400 7.4144 7.5044

PESQ (−5 dB) 2.5548 2.5530 2.5733 2.5542

LSD (−3 dB) 1.3945 1.3957 1.4000 1.3882
Output-SNR (0 dB) 7.9061 8.0242 7.8262 7.9482

PESQ (0 dB) 2.6639 2.6639 2.6812 2.6603

LSD (0 dB) 1.3244 1.3270 1.3341 1.3221

From Table 4 we can see that the number of train-
ing data frames do impact the performance of our MC–
NMFSE algorithm. Specifically, when input SNR is
very low (such as −5 dB), more training data benefits
the speech enhancement performance. For example,
when the training data frame number s is 120 thousands,
the SNR and LSD reach their best values. With the in-
crease of the input SNR, such as SNR= 0 dB, SNR,
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PESQ and LSD reach their highest values at s = 60, 90
and 120 thousands, respectively. In average, these re-
sults indicate that longer training data may lead to better
noise suppress while keep lower speech distortion.

4 Conclusions
In this paper, a novel multi-constraint NMF based

speech enhancement (MC–NMFSE) against the low-
SNR nonstationary noise is proposed. Specifically,
sparsity property of speech and low rank property of
nonstationary noise are employed to constraint the fac-
torization, then corresponding solution is obtained. The
results of the experiments with mixtures containing var-
ious noise types show that the proposed MC–NMFSE
algorithm outperforms the conventional NMF algorithm
both with TIMIT database and CCTV News database.
Besides, the proposed MC–NMFSE algorithm outper-
forms MMSE algorithm in terms of SNR and PESQ un-
der nonstationary noise in low SNR conditions, but it is
slightly inferior to MMSE algorithm under destroyerops
noise condition since the property of destroyerops is
closer to stationary noise.
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