
第 34卷第 6期
2017年 6月

控 制 理 论 与 应 用
Control Theory & Applications

Vol. 34 No. 6
Jun. 2017

基基基于于于稀稀稀疏疏疏表表表示示示的的的帕帕帕金金金森森森功功功能能能连连连接接接模模模式式式定定定位位位

DOI:10.7641/CTA.2017.60629

陈勇斌, 李远清†

(华南理工大学自动化科学与工程学院,广东广州 510641)

摘要:在脑成像数据分析中,基于稀疏表示的模式定位算法在群组水平分析中具有非常优秀的性能,但在单个数据集
的情况下结果还不尽如人意. 为此,文中在先前研究的基础上提出了一种改进算法,通过基于原始数据集生成多个派生
数据集的方法,来改善算法在单个数据集分析中的不足. 仿真结果表明改进后算法在性能上有显著的提高. 文章随后将
该改进算法应用于帕金森病异常功能连接模式定位分析之中,得到广泛分布于全脑的与该疾病相关的269个异常功能连

接,由此对算法的有效性进行了验证,并可能有助于加强对与该疾病相关的病理生理机制的了解.
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Pattern localization of functional connectivity in Parkinson’s disease
based on sparse representation

CHEN Yong-bin, LI Yuan-qing†
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Abstract: In the analysis of brain imaging data, the sparse representation-based pattern localization algorithm has a very
good performance at the group level data analysis. But at the single level, it’s performance is still disappointed. Therefore,
in order to compensate for this deficiency, an improved algorithm based on previous research was proposed in this study.
By generating multiple derived data sets from the original data and then performing pattern localization procedure, the
improved algorithm has better performance compared to the original in simulation. Subsequently, the improved algorithm
was applied to the analysis of localizing all abnormal brain functional connections in Parkinson’s disease. 269 abnormal
connections were obtained and they were widely distributed throughout the entire brain. Thus, the effectiveness of the
algorithm was verified and our findings may have the potential to advance the understanding of the neural mechanism of
this disease.
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1 Introduction
Various brain imaging techniques have become

available in the recent decades. These techniques make
it possible to observe brain structure or brain function-
al activity noninvasively. As powerful tools to explore
and reveal the mechanism of brain activity, they great-
ly promote the progress of brain science research, and
enrich our understanding of the complex structure and
function of the brain[1].

In the analysis of brain imaging data, pattern local-
ization has attracted considerable attention. For exam-
ple, a great deal of researches have been devoted to lo-
calization of brain activation induced by different stim-
uli or localization of abnormal areas of structure in pa-
tients with neurological or psychiatric disease based on
magnetic resonance imaging (MRI). Traditionally, brain
imaging data analysis mainly adopts univariate analy-

sis methods such as general linear model (GLM)[2–3],
voxel-based morphometry (VBM)[4]. Although these
conventional methods have the ability of detecting sta-
tistical group differences by analyzing each position of
the brain separately and have been tremendously pro-
ductive, they might ignore potential source information
or the spatial correlation in the data, such as the inter-
relationship between different brain areas[5]. Therefore,
they can’t provide higher sensitivity and may not obtain
satisfactory results.

In recent years, multivariate pattern analysis (MV-
PA) approaches derived from pattern recognition tech-
niques have been widely implicated in brain imaging
data analysis[6–7]. Compared with the conventional un-
ivariate methods, MVPA presents a higher sensitivity,
because MVPA can take into account the pattern of in-
formation which may be shown across multiple vari-
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ables[8–9]. Several studies have shown that MVPA ap-
proaches are capable of extracting stable structural or
functional characteristic patterns from brain imaging
data[10–13].

However, in most MVPA approaches, not all the
informative features are selected because part of them
may be sufficient for decoding or classification. In or-
der to achieve the highest classification accuracy, on-
ly those features containing great discriminative ability
can be extracted. So the rest of the features containing
weak discriminative information may be ignored. In
many real applications, we want to extract all of the
informative features contributing to the discrimination,
no matter how small a contribution they provide. For
this purpose, Li and his colleagues[14] proposed a sparse
representation-based pattern localization algorithm and
have successfully applied it in localizing brain activa-
tion patterns corresponding to different stimulus class-
es respectively in functional MRI (fMRI) data analy-
sis. In this pattern localization algorithm, feature se-
lection can be modeled as a sparse representation prob-
lem[15]. And the selected features can be separated into
two sets according to the signs of the sparse decompo-
sition weights, corresponding to two brain states, which
was demonstrated by data analysis and mathematical-
ly proven based on several simplified models in paper
[14]. Compared with univariate analysis methods, this
algorithm has better performance in localizing all the
informative features at the group level (pattern localiza-
tion across multiple data sets) data analysis, but at the
single level (pattern localization based on only one data
set), it’s performance is still disappointed.

Parkinson’s disease (PD) is a common progres-
sive neurodegenerative disorder that manifests princi-
pally as resting tremor, rigidity, akinesia and postu-
ral instability in people over age 50. Recently, there
has been growing interest in exploring the function-
al connectivity in PD based on fMRI data. However,
these studies mainly adopted univariate analysis meth-
ods, there has been little focus on examining the func-
tional connectivity[16] based on MVPA. MVPA meth-
ods in functional connectivity analysis have been used
to extract group differences related to psychiatric disor-
ders such as schizophrenia[17] and major depression[18].
In this present study, we proposed an improved sparse
representation-based pattern localization algorithm
based on previous study[14] to improve the performance
at the single level data analysis and employed this im-
proved algorithm to localize all abnormal brain func-
tional connections in PD. Locating all of the abnormal
functional connections has the potential to advance the
understanding of the neural mechanism of this disease.
The results show that the improved algorithm has better
performance and functional connectivity abnormalities
in PD are widely distributed throughout the entire brain.

2 Pattern localization algorithm
The procedure of the sparse representation-based

pattern localization algorithm is illustrated in Fig.1.
Feature selection was based on the weights of all fea-
tures, which were determined by sparse representation.
We first explain the method for weight determination,
and then describe the pattern localization procedure step
by step.

Fig. 1 The algorithm diagram for pattern localization
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2.1 Feature weight determination
The data were given by a matrix A ∈ RM×K0 ,

where the M rows and the K0 columns correspond-
ed to the samples and the features respectively. The
column vector y ∈ RM was a label vector with 1 rep-
resenting one class (e.g. patients) and −1 represent-
ing another class (e.g. controls). To obtain a weight
vector w of features, we solved the following opti-
mization problem:

min ||w||1, s.t. Aw = y, (1)

model (1) can be seen as a sparse regression between
the data matrix A and the label vector y. The absolute
value of each entry of the optimal solution (denoted
as w0) reflects the contribution of its corresponding
feature to the discrimination between two classes.

Setting w = u − v, where u,v ∈ RK0 are non-
negative, the optimization problem (1) can be convert-
ed to the following equivalent linear programming
problem:

min
K0∑
i=1

(ui + vi),

s.t.

{
[A −A][uT vT]T = y,
u, v > 0,

(2)

The solution of (2) can be obtained easily using the
MATLAB function“linprog”.
2.2 Pattern localization procedure

The pattern localization algorithm includes a few
steps. In the following, we begin to describe the com-
plete and detailed procedure.
2.2.1 Generating multiple approximate subsets

Because the features extracted from brain imag-
ing data included the generalization of“noise”, a
single pattern localization performed on the total data
may pick up irrelevant features. In order to remove
these irrelevant features, we generated K approxi-
mate but different subsets from original data and per-
formed pattern localization on each of them. In this
way, we can construct two probability maps and test
them with a permutation test (as shown later). The
data matrix A and the column vector y were equal-
ly partitioned into K non-overlapping parts accord-
ing to their rows. Each time, we removed one part
and used the rest (K−1) parts (denoted as A(k) and
y(k), k = 1, · · · ,K) as an approximate subset and
its corresponding label vector. Then we obtained K

pairs of approximate subsets and their corresponding
label vectors originated from data matrix A and the
label vector y. We suggest the parameter K is set
larger than 20 since it is related to the calculation of
probability maps.

2.2.2 Recursive iterative feature search
For each pair of approximate subset A(k) and its

corresponding label vector y(k) (k = 1, · · · ,K), a
recursive iterative feature elimination method relying
on the weights obtained by sparse representation was
used to pick up as many informative features as possi-
ble. In the nth iteration (n = 1, 2, · · · ), we performed
the following four steps:

Step 1 Feature weight determination. We ap-
plied the sparse representation method mentioned
above to the data updated in the previous iteration and
obtained a weight vector (denoted as w(n)) of fea-
tures. In the first iteration, the data to be used were
matrix A(k).

Step 2 Feature selection. We then selected N0

features (denoted as Ind
(n)
+ ) corresponded to the N0

largest positive elements and N0 features (denoted as
Ind

(n)
− ) corresponded to the N0 smallest negative ele-

ments of the weight vector w(n), respectively.
Step 3 Feature removal. We removed these

features in Ind
(n)
+ and Ind

(n)
− from the data matrix

used in the current iteration, and obtained an updat-
ed data matrix composed by the remaining features
which would be used in the next iteration.

Step 4 Decoding. We performed a decoding by
applying an SVM classifier to the updated data ma-
trix. The prediction accuracy of the labels (denoted as
rn) was calculated based on a cross-validation classi-
fication procedure. If rn > α, where α is a predefined
threshold, go to Step 1. Otherwise terminate above
iteration procedure. Theoretically, the best threshold
was 50% for the two-class problem, which was adopt-
ed in this paper.

After iteration procedure terminated, we obtained
two feature sets corresponding to two classes respec-
tively according to the signs of their weights

IND+
k =

∪
n
Ind

(n)
+ , IND−

k =
∪
n
Ind

(n)
− . (3)

Remark 1 In the above Step 4, the decoding was
based on the updated data matrix composed by the remaining
features after feature removal in the nth iteration.

2.2.3 Probability map calculation
As described above, two sets of selected features

were obtained using each approximate subset. There
were K approximate subsets in total, so we would fi-
nally have K sets IND+

k and K sets IND−
k of selected

features. Then we constructed a probability map only
using the K sets IND+

k . The probability value of each
feature was calculated by counting the number of ap-
pearances of this feature in all of the K sets IND+

k
and dividing this number by the total number of se-
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lected features in those sets. Similarly, only using the
K sets IND−

k , another probability map was construct-
ed. Thus, two probability maps corresponding to two
classes respectively were obtained.
2.2.4 Permutation test

In this study, we used a non-parametric permuta-
tion test to remove the irrelevant features. In each per-
mutation, we randomly permuted the labels of the da-
ta matrix A and repeated the above procedure. Each
time we obtained two probability maps corresponding
to two classes respectively. We performed 100 per-
mutations and obtained 100 probability maps for each
class. A null distribution for each class was construct-
ed by pooling all probability values of the 100 prob-
ability maps corresponding to this class. Given a sig-
nificance level α1, we found two critical thresholds θ1
and θ2 corresponding to the percentile 100(1− α1)%
of the two null distributions. Then, we applied the
two thresholds θ1 and θ2 to the two probability maps
obtained using real labels respectively and obtained
two sets of informative features.

In order to improve the performance at the single
level data analysis, we still need to present an iteration
algorithm for generating multiple derived data sets
from the original data matrix A. In each iteration, we
randomly chose L rows from matrix A to construct a
L×K0 matrix denoted as Ai, and the corresponding
L entries of label vector y formed a column vector de-
noted as yi ∈ RL. After N iterations, we would get
N pairs of derived data sets (A1,A2, · · · ,AN ) and
their corresponding label vectors (y1,y2, · · · ,yN ).
For each derived data set Ai (i = 1, · · · , N ), we per-
formed above procedure and obtained two probability
maps corresponding to two classes respectively. Then
we averaged all probability maps of each class across
all derived data sets and obtained two average proba-
bility maps also corresponding to two classes respec-
tively. Next, the two average probability maps were
tested with a permutation test. In each permutation,
we also obtained two average probability maps across
all derived data sets. Finally, we obtained two sets
of informative features in a similar way as described
above based on these average probability maps.
3 Simulation experiment

Because the patterns can not be obtained accu-
rately using real brain imaging data due to the influ-
ence of noise, so we first design simulation data (pre-
set patterns) and use it to compare the performance of
different algorithms.
3.1 Experimental design

First, we generated two fixed pattern vectors p1,
p2 ∈ R100, each containing 10 entries took value 1
and 90 entries took value 0 with their positions ran-

domly assigned. Furthermore, the index sets of value
1 of the two patterns were non-overlapped as illus-
trated in Fig.2. P ∈ R30×100 was a pattern matrix
containing 15 rows of pattern p1 and 15 rows of pat-
tern p2. V = [vjk] ∈ R30×100 was a noise matrix, of
which each column obeys normal distribution, with
mean zero and standard deviation σ. We can control
the magnitude of the noise via changing the value of
parameter σ. The matrix P +V was used to simulate
a real data matrix containing noise. The 15 rows of
P + V containing the pattern p1 were labeled as 1,
and the other 15 rows containing the pattern p2 were
labeled as −1. Considering the following optimiza-
tion problem:

min ∥w∥1, s.t. (P + V )w = y. (4)

We performed our improved pattern localization al-
gorithm to localize the two patterns p1 and p2. For
comparison, we also used the original algorithm to
localize the two patterns.

Fig. 2 Two patterns of simulation data

3.2 Simulation results
In order to compare the performance of different

methods completely, we used a series of noise magni-
tudes (σ = 0.1, 0.2, · · · , 1.0) to generate simulation
data and localized the two patterns p1 and p2. Setting
the significance level α1 = 0.001, iteration number
N = 5, row number L = 20, parameter K = 20,
the results averaged across 5 simulations were shown
in Fig.3. Compared with the original algorithm, our
improved algorithm proposed in this paper has better
performance under various noise levels.

Fig. 3 Localization accuracy comparison
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4 Pattern localization on real data
In this section, we employed the improved pattern

localization algorithm to localize all abnormal brain
functional connections in PD.
4.1 Participants

The participants included 21 PD patients (10
males and 11 females; mean age, 58.3 years) and 26

healthy controls (10 males and 16 females; mean age
61.3 years). The age and sex differences between the
two groups were tested by two-sample t test and χ2

test, respectively. No significances were shown be-
tween the two groups (p > 0.05).

4.2 Data acquisition and preprocessing
All the scans were performed on a GE Signal Ex-

cite HD 3.0--T MR scanner equipped with a standard
8-channel head coil in Guangdong General Hospital,
China. Foam padding and earplugs were used to limit
head movement and reduce scanner noise. Whole-
brain coverage resting-state functional images were
acquired by using a gradient-echo echo-planar T2*--
weighted imaging (EPI) sequence with the following
parameters: 30 slices (in ascending noninterleaved or-
der, parallel to the anterior commissure (AC) -- pos-
terior commissure (PC) line), TR = 2000ms, TE
= 30ms, flip angle = 80 ◦, FOV = 240 × 240mm,
matrix size = 64× 64, and slice thickness = 5.0mm

(no gap). During the data acquisition, subjects were
instructed to keep their eyes closed and to move as
little as possible. The scan time for each participant
was 372 s, and 186 volumes were obtained.

We discarded the first 5 volumes of the scanned
data for the instability of the initial MRI signal and the
participants’ adaptation to the circumstance. The fol-
lowing preprocessing consisted of slice timing correc-
tion, head motion correction, normalization to an M-
NI standard brain, detrending, temporal filtering, nui-
sance covariates regressing out. All fMRI data were
preprocessed using the statistical parametric mapping
(SPM8) and data processing assistant for resting-state
fMRI (DPARSF) programs.

4.3 Feature extraction
For each subject, the volumes were partitioned in-

to 116 ROIs according to the automated anatomical
labelling atlas[19]. Mean time series for each region
were extracted by averaging the time series within this
region. Then we evaluated the functional connectivity
between each pair of regions using the Pearson corre-
lation coefficient and obtained (116× 115)/2 = 6670

resting-state functional connections as the features for
pattern Localization.

4.4 Results
First, we generated 5 derived data sets with the

parameter L set as 40. Then we generated 40 appro-
ximate subsets from each derived data set. Given
significance level α1 = 0.001, we finally obtained
269 abnormal functional connections in PD. To
present the results in a clear and concise manner, ab-
normal functional connections and region weights are
displayed in a circle graph (Fig. 4) using a MATLAB
tool developed by ourselves. A solid or dashed line
indicates that the corresponding functional connec-
tivity exhibited a increase or decrease, respectively,
in the patients compared with the healthy controls.
Regions are size-coded by weight which was denot-
ed by its occurrence number in the abnormal func-
tional connections. In this investigation, 46% of the
abnormal functional connections decreased in the pa-
tients compared with the healthy controls. The ab-
normal functional connections were widely distribut-
ed throughout the entire brain and primarily located
within or across the default mode, cingulo-opercular
and frontal-parietal networks and the cerebellum. For
comparison, we also used the original algorithm to
localize all abnormal brain functional connections.
Given the same significance level α1 = 0.001 as
above, only 127 abnormal connections were extract-
ed. Therefore, the improved algorithm has better
sensitivity and can detect more subtle informative
features.

Fig. 4 Region weights and the distribution of the 269
abnormal functional connections in PD

5 Conclusions
In this study, we proposed an improved sparse re-

presentation-based pattern localization algorithm
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based on previous study and employed it to localize
all abnormal brain functional connections in PD. 269
abnormal functional connections were obtained, and
they were widely distributed throughout the entire
brain. These disease-related functional connections
might play important roles in the pathophysiology
of this disease. Our results have the potential to ad-
vance the understanding of the neural mechanisms of
PD. However, although our improved algorithm has
better performance, its cost also shows a remarkable
increase in computational complexity. Therefore, the
next step will be to improve the computational speed
of this algorithm.

References:
[1] LI E, GAO J, LU G, et al. Functional neuroimaging and its applica-

tions to critical brain diseases [J]. Scientia sinica vitae, 2015, 45(3):
237 – 246.

[2] FRISTON K J, JEZZARD P, TURNER R. Analysis of functional M-
RI time-series [J]. Human Brain Mapping, 1994, 1(2): 153 – 171.

[3] PENNY W D, FRISTON K J, ASHBURNER J T, et al. Statistical
Parametric Mapping: The Analysis of Functional Brain Images [M].
London, UK: Academic Press, 2011.

[4] ASHBURNER J, FRISTON K J. Voxel-based morphometry-the
methods [J]. NeuroImage, 2000, 11(6): 805 – 821.

[5] MOURAO-MIRANDA J, REYNAUD E, MCGLONE F, et al. The
impact of temporal compression and space selection on SVM anal-
ysis of single-subject and multi-subject fMRI data [J]. NeuroImage,
2006, 33(4): 1055 – 1065.

[6] O’TOOLE A, JIANG F, ABDI H, et al. Theoretical, statistical, and
practical perspectives on pattern-based classification approaches to
the analysis of functional neuroimaging data [J]. Journal of Cogni-
tive Neuroscience, 2007, 19(11): 1735 – 1752.

[7] KRIEGESKORTE N. Pattern-information analysis: from stimulus
decoding to computational-model testing [J]. NeuroImage, 2011,
56(2): 411 – 421.

[8] YANG Z, FANG F, WENG X. Recent developments in multivariate
pattern analysis for functional MRI [J]. Neuroscience Bulletin, 2012,
28(4): 399 – 408.

[9] PEREIRA F, MITCHELL T, BOTVINICK M. Machine learning clas-
sifiers and fMRI: a tutorial overview [J]. NeuroImage, 2009, 45(1):
S199 – S209.

[10] FAN Y, BATMANGHELICH N, CLARK C M, et al. Spatial patterns
of brain atrophy in MCI patients, identified via high-dimensional pat-
tern classification, predict subsequent cognitive decline [J]. NeuroIm-
age, 2008, 39(4): 1731 – 1743.

[11] ZHU C, ZANG Y, CAO Q, et al. Fisher discriminative analysis of
resting-state brain function for attention-deficit/hyperactivity disorder
[J]. NeuroImage, 2008, 40(1): 110 – 120.

[12] WEYGANDT M, BLECKER C R, SCHÄFER A, et al. fMRI pattern
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