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摘要:近年来,非线性分数阶系统的参数估计问题已经在许多科学和工程领域特别是计算生物学中,引起了广泛
的兴趣. 本文针对分数阶生物系统的参数估计问题,将系统参数和分数阶导数同时作为独立的未知参数来进行估
计,并提出了一种改进的布谷鸟搜索(improved cuckoo search, ICS)算法来求解该问题.在ICS算法中,通过引入一个
自适应参数控制机制,同时结合反向学习方法,从而达到提高算法收敛速度和估计值精度的目的. 最后,以三种经
典的分数阶生物动力系统模型为例进行了数值仿真,其中还考虑了有测量误差和噪声数据的情形. 仿真结果表明
ICS算法具有良好的适应性、较高的收敛可靠性及精度,为求解非线性分数阶系统参数估计问题提供了一种有效
工具.
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Abstract: Recently, parameter estimation of nonlinear fractional-order systems has attracted great interest among many
fields of science and engineering, especially computational biology. In this paper, we consider fractional dynamical models
arising from biological systems, and parameter estimation of which is converted into a multi-dimensional optimization
problem by treating both systematic parameters and fractional derivative orders as independent unknown parameters to be
estimated. Moreover, an improved cuckoo search (ICS) algorithm is proposed as a novel technique to solve the problem
of parameter estimation. In ICS, a simple adaptive parameter control mechanism is introduced, at the mean time, the
opposition-based learning method is incorporated to the presented algorithm so that it can accelerate convergence speed
and improve the accuracy of the estimated values. Numerical simulations are carried out on three typical fractional-order
dynamical biological systems. We also investigate the condition with measurement error and noisy data. The simulation
results demonstrate the effectiveness and efficiency of ICS, and show its significant superiority to the other methods. Thus,
ICS may be deemed to be a promising tool for parameter estimation of nonlinear fractional-order systems.
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1 Introduction
In the past decades, much attention has been drawn

for the study of fractional calculus[1], which is a gener-
alization of the traditional integer order integration and
differentiation. In comparison with integer calculus, the
major merit of fractional calculus lies in that it can offer
more accurate modelling of dynamical systems possess-
ing memory and hereditary properties. Recently, the ap-
plications of fractional calculus in modelling and con-

trol of systems in fields of science and engineering[2–3]

has aroused spectacular interest, where dynamical sys-
tems with anomalous diffusion effects in constrained
environments can be described by fractional differential
equations, for example, computational biology, physics,
chemistry and biochemistry, and hydrological applica-
tions[4–7].

Diffusive processes are crucial to biological inter-
actions. But due to molecular crowding, the environ-
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ments where these processes occur have high densities
and viscosities. Biological media exhibits a large degree
of complexity and heterogeneity, and often exhibits sub-
stantial compartmentalization[8]. Certain types of cellu-
lar differentiation are probabilistic and transient[9–11]. In
this paper, we consider the behaviour of a genetic reg-
ulatory feedback model in B. Subtilis bacteria. In B.
Subtilis bacteria, competence is a transiently differen-
tiated state associated with the capability for DNA up-
take from the nutrient limited environment[12]. In [12],
Süel et al. considered interactions among the associated
proteins ComK, ComS and the MecA complex, and
accordingly put forward a dynamical model of compe-
tence induction that can be described by a highly non-
linear coupled ordinary differential equation. However,
the translocations of ComK and ComS take place in
the individual cells in fact. Hence, in order to recapitu-
late the biological phenomenon accurately, a nonlinear
fractional dynamical system derived from the original
dynamical model of competence induction in B. Sub-
tilis bacteria is proposed by Liu et. al[13]. The fractional
biological model characterized by long range memory
transients describes dynamic processes that occur at d-
ifferent length and time scales.

In recent years, parameter estimation has become
a subject of great significance in mathematics and ap-
plications, especially computational biology[14–17]. In
computational biology, there are various kinds of pa-
rameter estimation problems which need to go back-
wards from the measurement data sets to estimated pa-
rameter values[13], such as the rates of some chem-
ical reactions or to determine approximate values of
the coefficients in the differential equations govern-
ing a particular phenomenon[18–20]. As for fractional
dynamical systems, diffusion modelling through frac-
tional order techniques has obtained accurate estimates
of frequency-domain behavior from time-domain equa-
tions[21–22]. Gabano and Poinot developed a new iden-
tification algorithm to estimate the thermal conductiv-
ity and diffusivity via fractional order modelling[21].
What’s more, in [13], novel techniques based on hy-
brid simplex search and particle swarm optimization
was employed to parameter estimation for fractional dy-
namical models coming from biological systems.

Over the past two decades, nature-inspired algo-
rithms, as a kind of global stochastic search methods,
have attracted much attention among researchers for
handling complex and tough optimization problems. In
virtue of evolutionary processes existed in nature, num-
bers of nature-inspired intelligent algorithms have been
accordingly proposed in succession, including genetic
algorithm (GA)[23], differential evolution (DE)[24], par-
ticle swarm optimization (PSO)[25], cuckoo search (CS)
algorithm[26], artificial bee colony (ABC)[27], state tran-
sition algorithm (STA)[28–31] and so on. Due to the out-

standing characteristics, different nature-inspired algo-
rithms have achieved a lot of promising results on a va-
riety of optimization problems so far[32–34]. Parameter
estimation essentially can be regarded as a complex op-
timization problem, which is enabled to be solved by the
nature-inspired algorithms. In this case, the unknown
parameters are considered as a series of independent
variables, and parameter estimation is converted to a
multi-dimensional optimization problem via system in-
version mechanism[35]. However, as far as we know,
little research has been done using cuckoo search al-
gorithm to estimate unknown parameters of fractional-
order biological systems, including systematic parame-
ters and fractional derivative orders.

Cuckoo search (CS) is a population-based heuristic
evolutionary technique proposed by Yang and Deb[26],
the basic idea of which comes out from the parasitic
brood swarm intelligence technique in cuckoo species
together with the Lévy flight behavior of some birds
and fruit flies. CS evolves a population of candidate
solutions by conducting Lévy flights random walk (L-
FRW) followed by using biased/selective random walk
(BSRW), to keep a balance between global exploration
and local exploitation in the search space. Moreover,
at each iteration process, a greedy (selection) strategy
is used to select a better solution from the current and
new generated solutions according to the corresponding
fitness values after each random walk. The salient fea-
tures of CS lie in its simple concept, limited parameters
and easy combination with other intelligent algorithm-
s. CS has received much attention in recent years and
has proven to be an efficient method theoretically and
practically. On the one hand, CS satisfies the global
convergence requirements, and thus is able to guarantee
global convergence properties[36]. On the other hand,
CS has been applied in many fields of optimization and
computational intelligence with promising results. For
instance, CS exhibits better performance than other al-
gorithms when applied to a range of continuous opti-
mization problems in the engineering design applica-
tions[37–38]. Hence, it’s necessary to utilize CS to tackle
the problem of parameter estimation of fractional dy-
namical biological systems.

Various CS extensions have been put forward so far.
However, there is no specific algorithm to achieve the
best solution for all optimization problems[39]. Mean-
while, it is hard to achieve an appropriate trade-off of
CS between exploration and exploitation. At each iter-
ation process, exploration walk around more extensive
search space results in increased required computation
time, whilst highly favored exploitation usually means a
rapid loss of diversity and leads to the so-called prema-
ture convergence or stagnation problem. Therefore, it is
still necessary to put forward new techniques to improve
the comprehensive performance of CS. In the basic C-



No. 8

WEI Jia-min et al: Parameter estimation of fractional dynamical models arising from

biological systems using an improved cuckoo search algorithm 1229

S algorithm, BSRW searches for new solutions using
a uniformly distributed random mutation factor which
plays an important role in controlling the population di-
versity and the explorative power of the algorithm. Gen-
erally speaking, a large mutation factor contributes to
population diversification, while a small mutation fac-
tor helps to accelerate the convergence rate. However,
the mutation factor in BSRW lacks the ability to bal-
ance well these two aspects. What’s more, given that a
constant fraction (Pa) of worse nests are abandoned in
BSRW, only using the adaptive parameter control might
help little at the later stages of evolution.

Motivated by these observations, an improved cuck-
oo search (ICS) algorithm is proposed in this paper to
accelerate convergence speed and improve the accura-
cy of the estimated values for the parameter estimation
problems. To sum up, the contributions of this research
are presented as follows:

1) A simple adaptive parameter control mechanism
is introduced to BSRW as similar done in MDE pBX al-
gorithm[40]. The adaptive parameter control mechanism
dynamically updates the control parameters based on a
Cauchy distribution and the Lehmer mean at each itera-
tion process. It is worth noting that there is no need to
obtain a user’s prior knowledge of the relationship be-
tween the parameter settings and the features of a spe-
cific optimization problem. The former is beneficial for
diversifying the mutation factors so that premature con-
vergence can be avoided, and the latter one is capable of
propagating larger mutation factors, which in turn helps
to enhance the progress rate of CS.

2) The opposition-based learning (OBL) method is
incorporated to the proposed algorithm by considering
an estimate and its corresponding opposite estimate si-
multaneously. OBL provides a higher chance of finding
solutions which are closer to the global optima[41], and
thus can help to obtain higher precision.

3) ICS is applied to parameter estimation of frac-
tional dynamical models arising from biological sys-
tems. Numerical simulations are performed on the non-
linear fractional dynamical model of competence in-
duction in B. Subtilis bacteria. In addition, to fur-
ther increase the credibility for the optimization per-
formance of the proposed ICS algorithm, another two
fractional-order dynamical biological systems are also
chosen as examples for numerical simulations, namely
the fractional-order cellular neural network (CNN) and
the fractional-order Lotka-Volterra system.

Statistical comparisons with the basic CS, three im-
proved CS variants and three other state-of-the-art al-
gorithms are provided as well. The simulation result-
s demonstrate the effectiveness and efficiency of ICS,
and show significant its superiority to the other meth-
ods. Thus, ICS may be deemed to be a promising tool
for parameter estimation of nonlinear fractional-order

systems.
The rest of the paper is organized as follows. In

Section 2, preliminaries including the basic concepts of
fractional derivative and problem formulation are pre-
sented. In Section 3, the ICS algorithm is proposed in
sufficient details after a brief introduction of the basic
CS. In Section 4, parameter estimation of three typical
fractional-order dynamical biological systems is con-
ducted through numerical simulations. Finally, conclu-
sions are drawn in Section 5.

2 Preliminaries
2.1 Definitions of fractional derivative

There are several definitions of fractional deriva-
tives, such as Grunwald-Letnikov (G–L), Riemann-
Liouville (R–L) and Captuo definitions. In particular,
the Caputo definition for fractional derivative is used in
this paper since the initial conditions of Caputo deriva-
tives differential equations own the identical form with
integer-order ones.

Definition 1[42] Let z(t) ∈ Cµ, µ > 1, the
Riemann-Liouville integral operator of β > 0 is de-
fined as

Jβz(t) =
1

Γ (β)

w t

t0
(t− τ)β−1z(τ)dτ, (1)

where Γ (·) is the gamma function.

Definition 2[43] The Captuo fractional derivative
of function f(t), and f(t) ∈ Cm

−1, m ∈ N ∪ {0} with
α > 0 is defined as

t0D
α
t f(t) = Jm−αf (m)(t) =

1

Γ (m− α)

w t

t0
(t− τ)m−α−1f (m)(τ)dτ,

α ∈ [m− 1,m],
dm

dtm
f(t), α = m,

(2)

where y(m) is the ordinary mth derivative of y, J is the
Riemann-Liouville integral operator.

2.2 Problem formulation
Consider the following n-dimensional fractional-

order dynamic system:
dX(t)

dt
=aD

1−γ
t f(X(t), X0, θ), (3)

where X(t) = (x1(t), x2(t), · · · , xn(t))
T ∈ Rn de-

notes the state vector, X0 = (x10, x20, · · · , xn0)
T de-

notes the initial state, θ= (θ1, θ2, · · · , θn)T is a set of
original systematic parameters, and γ = (γ1, γ2, · · · ,
γn)

T is a set of fractional derivative orders.
It is noted that the initial-value problem (3) is equiv-

alent to the following Volterra integral equation:

X(t)=X0+
1

Γ (γ)

w t

0
(t−τ)γ−1f(τ,X(τ))dτ , (4)

which can be solved by using the well-known predictor-
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corrector method with Caputo derivatives proposed by
Diethelm et al. in Ref. [44].

Suppose the structure of system (3) is known, and
then the estimated system can be written as

dX̂(t)

dt
=aD

1−γ̂
t f(X̂(t), X0, θ̂), (5)

where X̂(t) = (x̂1(t), x̂2(t), · · · , x̂n(t))
T ∈ Rn de-

notes the state vector of the estimated system, θ̂ =
(θ̂1, θ̂2, · · · , θ̂n)T is a set of estimated systematic pa-
rameters, and γ̂ = (γ̂1, γ̂2, · · · , γ̂n)T is a set of esti-
mated fractional derivative orders.

To estimate the parameters of system (3), the fol-
lowing objective function is defined as

F =
N∑

k=1

∥Xk − X̂k∥2, (6)

where k = 1, 2, · · · , N is the sampling time point, and
N denotes the length of data used for parameter estima-
tion. Xk and X̂k denote the state vector of the original
system (3) and the estimated system (5) at time k, re-
spectively. ∥ · ∥ denotes Euclid norm.

The parameter estimation of system (3) can be
achieved by searching suitable γ∗ and θ∗ such that the
objective function (6) is minimized, i.e,

(γ∗, θ∗) = arg min
(γ,θ)∈Ω

F, (7)

where Ω is the searching space admitted for systemat-
ic parameters and fractional derivative orders. In other
words, parameter estimation of fractional-order dynam-
ic systems is converted into a multi-dimensional opti-
mization problem, thus, the main task is to find the best
combination of the independent variables γ∗ and θ∗ via
the objective function.

3 Improved cuckoo search (ICS) algorithm
3.1 Cuckoo search algorithm

CS algorithm is a simple yet very promising s-
tochastic population-based method. For simplicity in
describing the basic CS algorithm, three idealized
rules[26] are used: 1) Each cuckoo bird lays one egg at a
time and dumps it at a random chosen host nest; 2) The
best nests with high-quality eggs will be carried over to
the next generations; 3) The number of available host
nests is fixed, and the host bird may discover the alien
egg laid by a cuckoo with a probability Pa ∈ [0, 1].

In CS, each egg in a nest represents a solution, and
each cuckoo is assumed to lay only one egg (thus rep-
resenting one solution). The aim is to use the new and
potentially better solutions (cuckoos) to replace a not-
so-good solution in the nests[45]. At each iteration pro-
cess, CS employs a balanced combination of a local ran-
dom walk and a global explorative random walk, which
are controlled by a switching parameter Pa. After each
random walk, a greedy strategy is used to select better
solutions from the current and new generated solutions

according to their fitness values.
At generation t, based on the rules and description

above, the global random walk is carried out by using
Lévy flights expressed as

Xt
i = Xt

i + α⊕ Lévy(λ), (8)

where α > 0 is the step size related to the scales of
the problem of interest, and the product ⊕ denotes the
entry-wise multiplication. Essentially, Lévy flights pro-
vide a random walk, the random steps of which are
drawn from a Lévy distribution for large steps, and can
be calculated as follows[36]:

Lévy(λ) ∼ ϕ× µ

|v| 1
λ

, (9)

ϕ = (
Γ (1 + λ)× sin(

π × λ

2
)

Γ (
1 + λ

2
)× β × 2

λ−1
2

)
1
λ , (10)

where λ is a constant number suggested as 1.5 in [37],
µ and v are random numbers drawn from a normal dis-
tribution and Γ (·) denotes the gamma function. Hence,
Eq. (8) in LFRW can be reformulated as

Xt
i = Xt

i + α0 ·
ϕ× µ

|v| 1
λ

· (Xt
i −Xbest), (11)

where α0 is a scaling factor (generally, α0 = 0.01),
Xbest is the best solution obtained so far.

Algorithm 1 Pseudo code of the basic CS algo-
rithm.

Generate an initial population of NP host nests Xi,
(i = 1, 2, · · · ,NP);

Evaluate the fitness value of each nest Xi;
Determine the best nest with the best fitness value;

while termination condition does not meet do
for i = 1, 2, · · · ,NP, do

Generate a cuckoo Xi randomly using L-
FRW according to Eq. (11);
Evaluate the fitness value Fi = f(Xi);
Choose a random nest Xj ;
if (Fj < Fi) then

Replace nest Xi with Xj ;
end if

end for
for i = 1, 2, · · · ,NP, do

Search for a new solution using BSRW
according to Eq. (13);

end for
Keep the best nest with quality solution;
Rank the nests and find the current best one;
Pass the current best nest to the next generation;

end while
After LFRW, CS continues to search for new solu-

tions by performing the local random walk, which can
be represented as biased/selective random walk (BSR-
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W). A substantial fraction of the new solutions are gen-
erated by far field randomization and their positions are
supposed to be far enough from the current best solu-
tion[26]. Accordingly, a mutant vector V t

i is generated
as follows:

V t
i = Xt

i + r · (Xt
r1 −Xt

r2), (12)

where r1 and r2 are two random indexes, r denotes the
mutation factor which is a uniformly distributed random
number in the interval [0, 1]. In case of being trapped
into a local optimum, BSRW employs a crossover oper-
ator with the probability of cuckoos’ being discovered:

U t
i =

{
V t
i , if (rand[0, 1] > Pa),

Xt
i , otherwise.

(13)

By using the greedy strategy, the next generation solu-
tion Xt+1

i is selected from Xt
i and U t

i through evalua-
tion of their corresponding fitness values.

The procedure of the basic CS algorithm is de-
scribed as the pseudo code shown in Algorithm 1.
3.2 Adaptive parameter control

In the basic CS algorithm, BSRW searches for new
solutions through three simple evolutionary operations
which are similar to the procedures of DE, namely mu-
tation, crossover and selection. For mutation, BSRW
adopts a uniformly distributed random number in the in-
terval [0, 1] as its mutation factor. According to earlier
theoretical studies on DE[46–47], it can be drawn that the
mutation factor plays an important role in controlling
the population diversity and the explorative power of the
algorithm. Generally speaking, a large mutation factor
contributes to population diversification, while a small
mutation factor helps to accelerate the convergence rate.
However, the mutation factor in BSRW lacks the abil-
ity to balance well these two aspects. Inspired by the
parameter adaptation schemes used in MDE pBX algo-
rithm[40], we combine the adaptive method with CS in
order to improve the original mutation factor.

At each generation t, the mutation factor Fi of each
individual target vector Xt

i is generated independently
as

Fi = Cauchy(Fm, 0.1), (14)

where Cauchy(Fm, 0.1) is a random number sampled
from a Cauchy distribution with the location parameter
Fm and mutation factor 0.1.

The value of Fi is to be truncated when Fi > 1, and
regenerated when Fi 6 0. All the successful mutation
factors will be stored in the set SF, that is to say, the cur-
rent generation generating better trial vectors are able to
be carried over to the next generation. The location pa-
rameter Fm of the Cauchy distribution is initialized to
be 0.5, and then updated at the end of each generation
according to the following formula:

F t+1
m = wF · F t

m + (1− wF) ·meanL(SF), (15)

where wF is a random weight factor between 0.8 and 1
given by

wF = 0.8 + 0.2 ∗ rand(0, 1), (16)

and meanL(·) is the Lehmer mean[48] formulated by

meanL(SF) =

∑
Fi∈SF

F 2
i∑

Fi∈SF

Fi

. (17)

In this case, Eq. (12) can be rewritten as follows:

V t
i = Xt

i + Fi · (Xt
r1 −Xt

r2), (18)

where Fi presents an adaptive mutation factor drawn
from Cauchy distribution. Therefore, new mutant solu-
tions are generated through the modified Eq. (18), and
further evolve by applying a crossover operator under
the discovering probability and a selection operator as
well in BSRW.

It is noteworthy that Fi is updated based on a trun-
cated Cauchy distribution. Compared with a normal
distribution, the Cauchy distribution has a far wider tail
which is beneficial for diversifying the mutation factor,
and thus brings sufficient perturbation so as to avoid
premature convergence. Moreover, the set SF is used
to memorize the successful mutation factors in the cur-
rent generation. By applying the Lehmer mean of SF in
Eq. (17), the adaptation of Fm can place more weight
on larger successful scaling factors which leads to larg-
er perturbation to the target vectors, and thus helps to
circumvent premature convergence at local optima.
3.3 Opposition-based learning

Opposition-based learning (OBL), introduced by
Ti-zhoosh[49], is a new concept in computational in-
telligence. The main idea behind OBL is to consider
both of a solution and its corresponding opposite solu-
tion in order to get a better approximation of the cur-
rent candidate solutions. It has been proven to be an
effective method to enhance various optimization ap-
proaches[41, 50]. Hence, the OBL idea is incorporated
into our proposed algorithm, to further increase diversi-
ty and speed up the convergence.

Suppose X = (x1, x2, · · · , xn) is a solution in
an n–dimensional space, where xi ∈ [Lxi, Uxi],
(i = 1, 2, . . . , n). Then, the opposite solution X ′ =
(x′

1, x
′
2, · · · , x′

n) is given by

x′
i = Lxi + Uxi − xi. (19)

Let f(·) be a fitness function via which the fitness
value can be evaluated. According to the above giv-
en definitions of X and X ′, if f(X ′) 6 f(X), then
X is replaced with X ′, otherwise X is kept. Thereby,
the solution and its opposite solution are evaluated si-
multaneously in order to obtain the fitter one. OBL is
implemented to initialize population and produce new
solutions during evolution process similar to [41].
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3.4 The proposed ICS algorithm
In this section, the proposed ICS algorithm is pre-

sented on the basis of the aforementioned methods in or-
der to improve the performance of the basic CS. Firstly,
population initialization is carried out by OBL which fa-
vors diversification so that a superior set of starting can-
didate solutions are generated. Then, ICS respective-
ly uses LFRW and BSRW to search for new solutions
at the following each iteration process, where BSRW
evolves under the adaptive parameter control mecha-
nism that dynamically updates the control parameters
based on a Cauchy distribution and the Lehmer mean
at each iteration process. Afterwards, new populations
are calculated in terms of opposition-based generation
jumping to accelerate the convergence speed at the later
stages of evolution.

Thereinto, at the stage of population initialization,
a double-size population is generated through unifor-
m random distribution and the corresponding quasi-
opposite positions, which are defined as

xi,j = aj + (bj − aj) · ϵ, (20)

xO
i,j = aj + bj − xi,j, (21)

where aj and bj are the lower and upper bounds of jth
variable, respectively; ϵ is a uniformly random number
from [0, 1]. The NP best solutions are selected as the
final initial population from X and XO.

Generation jumping calculates the opposite of each
variable based upon the minimum and maximum values
of that in the current population:

xO
i,j = xP

min(j) + xP
max(j)− xi,j, (22)

where xP
min(j) and xP

max(j) denote the minimum and
maximum values of the jth variable in the current pop-
ulation P , respectively.

In addition, since that the scaling factor in LFRW is
sensitive to the length-scale of candidate optimization
problems, we use a varied scaling factor as similar done
in [51] instead of a fixed constant value α0 in the basic
CS algorithm. Hence, Eq. (11) is reformulated as

Xt
i = Xt

i + δ · ϕ× µ

|v| 1
λ

· (Xt
i −Xbest), (23)

where δ is a varied scaling factor drawn from a uniform
distribution within the range [0, 1]. Besides, a simple
boundary-handling method[52] is utilized in the evolu-
tion process of LFRW and BSRW. If the jth element
of U t

i is out of the boundary [xmin,j, xmax,j], then it is
reset as below:

ut
i,j=

{
min{xmax,j, 2xmin,j−ut

i,j}, if ut
i,j<xmin,j ,

max{xmin,j, 2xmax,j−ut
i,j}, if ut

i,j>xmax,j .
(24)

In this paper, to make a fair comparison, the same
yet simple boundary-handling method is applied for al-

l mentioned algorithms. The pseudo-code of the pro-
posed ICS algorithm is shown in Algorithm 2.

Algorithm 2 Pseudo code of the proposed ICS
algorithm.

Generate an initial population of NP host nests X
using OBL by Eqs. (20)–(21);

Determine the best nest with the best fitness value;
while termination condition does not meet do

for i = 1, 2, · · · ,NP, do
Search for a new solution Xi randomly using
LFRW by Eq. (23);
Perform the boundary-handling method using
Eq. (24);
Greedily select a better solution using the gre-
edy strategy according to their fitness values;

end for
for i = 1, 2, · · · ,NP, do

Generate the mutation factor Fi using Eq.(14);
Search for a mutant solution Vi using Eq. (18);
Perform the boundary-handling method using
Eq. (24);
Obtain a new solution Ui via crossover operat-
ion using Eq. (13);
Greedily select a better solution from Ui and
Xi according to their fitness values;

end for
Generate new solutions using opposition-based ge-
neration jumping by Eq. (22);
Keep the best nest with quality solution;
Rank the nests and find the current best one;
Pass the current best nest to the next generation;
Update Fm using Eqs. (15)–(17);

end while

3.5 Computational complexity of ICS
Compared with the basic CS algorithm, ICS needs

to perform additional computations on the OBL pro-
cess. The newly proposed mutation factor under adap-
tive parameter control in ICS has the same order of com-
plexity level as that of the uniformly distributed random
number in CS. During one generation, calculations of
opposition population and population sorting are car-
ried out after BSRW. Suppose n and N denote dimen-
sion and population size, the computation complexity
of this procedure takes O(N · n). Since the complex-
ity of the original CS algorithm is O(Gmax ·N · n)
where Gmax denotes the maximal number of gen-
eration, the total computational complexity of ICS is
O(Gmax ·N · n + N · n), which is simplified to
O(Gmax ·N · n). Hence, the proposed ICS does not
significantly increase the overall complexity compared
with the original CS.
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4 Parameter estimation of fractional dy-
namical models arising from biological
systems using ICS
In this section, we investigate the parameter esti-

mation problem of fractional dynamical models arising
from biological systems. The proposed ICS algorithm
is applied to estimate the unknown parameters for three
typical fractional-order dynamical biological systems,
i.e., the nonlinear fractional dynamical model of com-
petence induction in B. Subtilis bacteria, the fractional-
order cellular neural network (CNN) and the fractional-
order Lotka-Volterra system. Also, comparisons with
the basic CS, three improved CS variants and three other
state-of-the-art algorithms are conducted through vari-
ous numerical simulations.
4.1 Nonlinear fractional-order dynamical bio-

logical systems
To start with, a brief introduction of the compe-

tence induction in B. Subtilis bacteria[12] is given before
carrying out parameter estimation. When encountering
the case of nutrient limitation, a minority of B. Subtilis
cells become competent for DNA uptake while most of
those commit irreversibly to sporulation. Extensive re-
searches have demonstrated that the process of compe-
tence induction is dependent on and driven by the con-
centration levels of two key proteins, namely ComK
and ComS. On the one hand, ComK activates its own
expression together with expression of a series of genes
necessary for competence required for competence in-
duction. On the other hand, the ComS peptide compet-
itively inhibits ComK degradation via the MecA com-
plex as mentioned in [53–54]. In particular, Süel et
al.[12] considered interactions among ComK, ComS
and the MecA complex, which is collectively referred
to as the ‘MeKS’ module, and accordingly proposed its
mathematical model. The MeKS model can be reduced
to a dynamical system of two ordinary differential e-
quations incorporating both the direct positive and the
ComS mediated negative feedback loops of ComK.
According to [13], Liu et al. introduced a nonlinear
fractional dynamical model of competence induction in
B. Subtilis bacteria which can be written as a system of
two nonlinear fractional ordinary differential equation-
s in dimensionless form. The system is selected as the
first example in this paper, expressed as

dK

dt
=0D

1−γ1

t (ak +
bkK

n

Kn
0 +Kn

− K

1 +K + S
),

dS

dt
=0D

1−γ2

t (
bs

1 + (
K

k1
)p

− S

1 +K + S
),

(25)

where K and S denote the concentration levels of
ComK and ComS protein, respectively. ak and bk rep-
resent the minimal and fully activated rate of ComK

production, respectively. k0 indicates the concentra-
tion of ComK required for 50% activation. Moreover,
the cooperativity of ComK auto-activation and ComS
repression are parameterized by the Hill coefficients n
and p, respectively. Expression of ComS has the max-
imum rate bs and is half-maximal at K = k1.

The dynamic behavior of fractional-order differen-
tial equations in system (25) varies upon different set
of fractional orders and systematic parameters. Fig. 1
shows numerical simulations of ComK and ComS ac-
tivities as a function of time under γ1, γ2 =0.99, 0.90,
0.85 when systematic parameters are set as (ak, bk,
bs, n, p, k0, k1) = (0.004, 0.07, 0.82, 2, 5, 0.2, 0.222)
with the initial point (K0, S0) = (0.05, 6.0).

Fig. 1 Simulated ComK and ComS activities with γ1, γ2=

0.99, 0.90, 0.85 during competence for system (25)

In addition, to increase the credibility for the opti-
mization performance of the proposed ICS algorithm,
another two fractional-order dynamical biological sys-
tems are also chosen as the examples for numerical sim-
ulations. The second example, fractional-order cellular
neural network (CNN) [7], is described as

0D
q1

t x1 = −x1 + p1f(x1)− sf(x2)− sf(x3),

0D
q2

t x2 = −x2 − sf(x1) + p2f(x2)− rf(x3),

0D
q3

t x3 = −x3 − sf(x1) + rf(x2) + p3f(x3),

(26)

where the activation function is defined as

f(xj) =
1

2
(|xj + 1| − |xj − 1|), j = 1, 2, 3,

and the system (26) is chaotic when parameters
(p1, p2, p3, s, r) = (1.24, 1.1, 1, 3.21, 4.4), and sys-
tem orders (q1, q2, q3) ≡ (q = 0.99) with initial condi-
tions (x1(0), x2(0), x3(0)) = (0.1, 0.1, 0.1).

The third example, fractional-order Lotka-Volterra
system[7], is described as0D

q1

t x = ax− bxy + ex2 − szx2,

0D
q2

t y = −cy + dxy,

0D
q3

t z = −pz + szx2,
(27)

where the system (27) is chaotic when parameters
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(a, b, c, d, e, p, s) = (1, 1, 1, 1, 2, 3, 2.7), and system
orders (q1, q2, q3) ≡ (q = 0.95) with initial conditions
(x(0), y(0), z(0)) = (1, 1.4, 1).
4.2 Numerical simulations

To demonstrate the performance of the proposed
ICS algorithm, ICS is compared with the basic CS algo-
rithm, three promising CS variants and three other state-
of-the-art algorithms, namely ACS[55], ICS 2011[56],
NNCS–F[57], PSO[58], DE[24], STA[28–31]. The param-
eter settings of all the comparison methods are given in
Table 1. In order to eliminate the difference of each ex-
periment, each algorithm is executed 15 times and all
runs are terminated after the predefined maximum iter-
ation number is reached. To make a fair comparison,
the same parameter settings are employed to the afore-
mentioned three examples in numerical simulations.

Table 1 Parameter settings of different methods

Method Parameters

CS NP = 40, Pa = 0.25

ACS NP = 40, Pa = 0.25

NP = 40, Pa,min = 0.05, Pa,max = 0.5,ICS 2011
αmin = 0.01, αmax = 0.5

NNCS–F NP = 40, Pa = 0.25, p = 0.25

PSO NP = 40, ωmin = 0.4, ωmax=0.9, c1=c2=2

DE NP = 40, F = 0.5, CR = 0.7

SE = 40, αmin = 1E− 4, αmax = 1, β = 1,STA
γ = 1, δ = 1, fc = 2

ICS NP = 40, Pa = 0.25

For the first example, the proposed ICS algorith-
m is applied to study the inverse problem and deter-
mine unknown parameters of system (25), i.e., for all

given values of K(t) and S(t) at t = tk ∈ [0,T ],
(k = 1, · · · , N), N = 100, T = 20 and given initial
conditions (K0, S0). To validate the effectiveness and
efficiency of ICS and for ease of illustration, γ1, γ2 and
bs are taken as unknown parameters needed to be esti-
mated, the searching spaces of which are set to (γ1, γ2,
bs) ∈ [0.8, 1.2] × [0.8, 1.2] × [0.6, 1.0]. The true val-
ues of γ1, γ2 and bs are set as 0.90, 0.90 and 0.82 in
advance. The maximum iteration number is set to 200.

The statistical results of the average estimated pa-
rameters with corresponding relative error values and
the objective function values for system (25) over 15
independent runs are presented in Table 2. According
to Table 2, we can see that all the algorithms have a cer-
tain capability of estimating parameters, among which
ICS is the best one among the seven algorithms in terms
of solutions accuracy. From Table 2, it can be easily
found that the estimated values generated by ICS are
closer to the true parameter values, which shows that
ICS is more accurate than CS, ACS, ICS 2011, NNCS-
F, PSO, DE and STA. Besides, from the experimental
results marked in bold, ICS obtains the smallest relative
error values for the corresponding estimated parameter-
s of system (25) only except for γ2, where its relative
error value is slightly worse than that of DE. However,
the mean and the standard deviation of objective func-
tion values obtained by ICS are significantly better than
those calculated by the comparison algorithms namely
CS, ACS, ICS 2011, NNCS–F, PSO, DE and STA. This
indicates that ICS can bring estimated values with much
higher accuracy to the parameter estimation problem
for the nonlinear fractional dynamical model of com-
petence induction in B. Subtilis bacteria (25).

Table 2 Statistical results of system (25) using different methods

Method CS ACS ICS 2011 NNCS–F PSO DE STA ICS

γ1 0.899984 0.900000 0.900001 0.900001 0.873333 0.900000 0.899585 0.900000
|γ1 − 0.90|

0.90
1.81E−05 1.95E−09 1.06E−06 1.33E−06 2.96E−02 9.05E−14 4.61E−04 1.28E−14

γ2 0.899995 0.900000 0.900000 0.907061 0.900001 0.900000 0.899977 0.900000
|γ2 − 0.90|

0.90
5.04E−06 3.25E−10 4.95E−07 1.17E−06 7.85E−03 2.84E−15 2.60E−05 3.45E−15

bs 0.820000 0.820000 0.820000 0.820000 0.820469 0.820000 0.819999 0.820000
|bs − 0.82|

0.82
2.57E−07 1.65E−11 3.38E−08 7.93E−08 5.72E−04 1.90E−15 1.10E−06 2.71E−16

FAvg 5.42E−06 5.96E−10 1.09E−06 2.11E−06 5.60E−03 2.13E−13 3.16E−04 7.58E−15
FStd 3.02E−06 5.71E−10 5.43E−07 1.27E−06 9.29E−03 1.66E−13 3.48E−04 4.63E−16

Figure 2 shows the evolution process of the avera-
ge objective function values via ICS, CS, ACS, ICS
2011, NNCS–F, PSO, DE and STA. From Fig. 2, it
can be found that the objective function value ob-
tained by ICS decreases to zero much faster than the
other algorithms. From the foregoing discussion, it
can be concluded that ICS demonstrates better effec-

tiveness and efficiency in parameter estimation of the
fractional nonlinear dynamical model of the compe-
tence induction.

Moreover, since that researches have shown that
in the cell stochastic effects in gene expression would
generate prominent variability[12]. Hence, a further
test is carried out to find out whether the proposed pa-
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rameter estimation method is tolerant to the measure-
ment error. We assume that there are some perturba-
tions in measurement, i.e., K(t) = K̄(t) + ξK(t) and
S(t) = S̄(t) + ξS(t), where K̄(t) and S̄(t) are solu-
tions of system (25), and the perturbations are given
in the following forms similar as[13]

ξK(t) = CK(−0.5 + RandK), (28)

ξS(t) = CS(−0.5 + RandS), (29)

where CK and CS are scale constants, RandK and
RandS are random numbers in the range [0, 1]. Com-
parison of simulated ComK and ComS activities
with and without noise perturbation during compe-
tence are depicted in Fig. 3 with (γ1, γ2) = (0.9, 0.9).

Fig. 2 Evolution process of the average objective function
values for system (25) based on different methods

Fig. 3 Comparison of simulated ComK (red continuous line)
& ComS (block continuous line) activities with given
data ComK (blue noise line) & ComS (green line)
under noise perturbation with CK =CS = 0.3 during
competence with (γ1, γ2) = (0.9, 0.9)

In this test, the scale constants CK and CS are set
to 0.01, and the maximum iteration number is set to
1000. Unknown parameters γ1, γ2 and bs are estimat-
ed through ICS via a single run. Under noise pertur-
bation, we obtain the estimated values:

γ1 = 0.900, γ2 = 0.904, bs = 0.820,

which illustrates that the robustness of ICS and can
bring solutions with high quality even placed in per-
turbation environment.

For the second example, the true values of sys-
tematic parameters p1, r and fractional order q in sys-
tem (26) are randomly considered as unknown param-
eters which need to be estimated. The correspond-
ing searching spaces are set to (p1, r, q) ∈ [0.1, 3] ×
[2, 8] × [0.8, 1.2]. Besides, the length of the sampled
data N is set to 200, and the step size is set to 0.005.
The maximum iteration number is set to 200.

The statistical results including the mean estimat-
ed values, the relative error values, and the objective
function values via different methods over 15 inde-
pendent runs are summarized in Table 3. In addition,
the evolution process of the average results of the ob-
jective function values for system (26) is shown in
Fig. 4. According to Table 3, it can be noted that
ICS obtains more accurate estimated values than CS,
ACS, ICS 2011, NNCS–F, PSO, DE and STA. Be-
sides, it can also be clearly seen that the relative error
values obtained by ICS are all smaller than those of
CS, ACS, ICS 2011, NNCS–F, PSO, DE and STA,
which can further prove that ICS is able to achieve a
higher calculation accuracy. What’s more, the mean
and the standard deviation of objective function val-
ues obtained by ICS are also superior to the compar-
ison algorithms. Fig. 4 depicts the convergence pro-
cess of the average results of the objective function
values. From Fig. 4, it is obvious that ICS can con-
verge more rapidly than the other algorithms. There-
fore, the ICS algorithm demonstrates the good per-
formance in aspects of robustness and convergence
accuracy, which is highly competitive with those of
CS, ACS, ICS 2011, NNCS–F, PSO, DE and STA for
fractional-order cellular neural network (CNN) (26).

Fig. 4 Evolution process of the average objective function
values for system (26) based on different methods
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Table 3 Statistical results of system (26) using different methods

Method CS ACS ICS 2011 NNCS–F PSO DE STA ICS

p1 1.240031 1.240000 1.240001 1.240000 1.239995 1.240000 1.239977 1.240000
|p1 − 1.24|

1.24
2.48E−05 8.66E−09 6.69E−07 4.35E−11 3.81E−06 3.35E−13 1.86E−05 2.67E−14

r 4.399972 4.400000 4.399999 4.400000 4.400004 4.400000 4.400012 4.400000
|r − 4.40|

4.40
6.47E−06 1.92E−09 2.25E−07 9.99E−12 8.19E−07 5.17E−14 2.65E−06 6.06E−15

q 0.989996 0.990000 0.990000 0.990000 0.990001 0.990000 0.990002 0.990000
|q − 0.99|

0.99
3.76E−06 1.05E−09 2.85E−07 2.63E−12 5.36E−07 6.45E−14 2.23E−06 4.60E−15

FAvg 8.64E−05 1.41E−08 6.71E−06 6.66E−11 1.03E−05 3.39E−12 9.09E−05 9.38E−14
FStd 6.62E−05 2.03E−08 4.49E−06 3.97E−11 6.06E−06 2.45E−12 1.04E−04 1.20E−13

For the third example, the true values of system-
atic parameters e, p and fractional order q in system
(27) are randomly assumed as unknown parameters
needed to be estimated, the searching spaces of which
are set to (e, p, q) ∈ [0.1, 10] × [0.1, 10] × [0.8, 1.2].
The length of the sampled data N is set to 200, the
step size is set to 0.005, and the maximum iteration
number is set to 100.

Table 4 records the comparison results of the
mean estimated values with corresponding relative er-
ror values and the objective function values by differ-
ent methods over 15 independent runs. The evolution
process of the average results of the objective function
values for system (27) are plotted in Fig. 5. Based
on Table 4 and Fig. 5, it can be observed that ICS is
much better than the other six algorithms, and sup-
plies more precise and robust results with faster con-
vergence speed. In particular, the relative error values
produced by ICS marked in bold are all smaller than
those by CS, ACS, ICS 2011, NNCS–F, PSO, DE and
STA. The relative error values are also an important
indicator to assess the accuracy of estimated values.
Accordingly, the estimated values generated by ICS

are closer to the true parameter values than those by
the other algorithms. Besides, the objective function
values of ICS decline significantly faster than the oth-
er comparison algorithms. In general, the comprehen-
sive performance of ICS is remarkably superior to all
the listed comparison algorithms in terms of conver-
gence precision and searching efficiency.

Fig. 5 Evolution process of the average objective function
values for system (27) based on different methods

Table 4 Statistical results of system (27) using different methods

Method CS ACS ICS 2011 NNCS–F PSO DE STA ICS

e 2.000530 2.000000 2.000034 1.999927 2.000122 2.000000 2.000001 2.000000
|e− 2.00|

2.00
2.65E−04 3.72E−10 1.72E−05 3.64E−05 6.08E−05 6.97E−09 4.76E−07 4.00E−15

p 3.001392 3.000000 3.000127 2.999911 2.999612 3.000000 3.000005 3.000000
|p− 3.00|

3.00
4.64E−04 1.21E−10 2.98E−05 4.22E−05 1.29E−04 1.37E−08 1.65E−06 7.11E−15

q 0.950082 0.950000 0.950001 0.950000 0.949993 0.950000 0.950000 0.950000
|q − 0.95|

0.95
8.58E−05 1.08E−11 1.55E−06 4.69E−07 7.26E−06 8.06E−10 1.46E−07 3.51E−16

FAvg 2.05E−02 2.26E−08 1.99E−03 2.79E−03 2.88E−03 2.56E−07 2.35E−04 2.41E−13
FStd 1.06E−02 1.76E−08 9.46E−04 2.25E−03 2.55E−03 1.74E−07 1.48E−04 1.11E−13
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5 Conclusions
In this paper, an improved cuckoo search (ICS) al-

gorithm is proposed for tackling inverse problems that
correspond to biological systems of fractional nonlin-
ear dynamical models. Parameter estimation is con-
verted into a multi-dimensional optimization problem
by treating both systematic parameters and fraction-
al derivative orders as independent unknown param-
eters to be estimated. Particularly, in ICS, a sim-
ple adaptive parameter control mechanism is intro-
duced, at the mean time, the opposition-based learn-
ing (OBL) method is incorporated to the presented al-
gorithm so that it can accelerate convergence speed
and improve the accuracy of the estimated values.
Thereinto, the adaptive parameter control mechanism
dynamically updates the control parameters based on
a Cauchy distribution and the Lehmer mean at each
iteration process. Moreover, OBL favors increasing
the chance of finding solutions which are closer to
the global optima. The techniques help to enhance
the comprehensive performance of optimization. Fi-
nally, numerical simulations are conducted on three
typical fractional-order dynamical biological system-
s, where the condition with measurement error and
noisy data is also investigated. From the simulation
results, it can be seen that parameters are estimated
successfully through ICS, and are much closer to the
true matching values than the comparison algorithm-
s, which demonstrate the effectiveness, efficiency and
superiority of ICS. These methods and techniques can
also be extended to other kinds of parameter estima-
tion problems of nonlinear fractional-order systems in
various fields.
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