基于改进黏菌优化算法的光伏多峰MPPT控制策略

董密,胡佳盛,杨建[†],宋冬然,万江湖

(中南大学 自动化学院, 湖南 长沙 410000)

摘要: 当光伏阵列在局部阴影遮挡条件下时, 传统最大功率点追踪控制策略易陷入局部最优解, 降低光伏系统发电效率. 为解决该问题, 本文提出了一种基于改进黏菌优化算法的最大功率点追踪策略. 该策略在黏菌优化算法的基础上, 基于光伏阵列特性提出了新的边界条件, 减小超出边界黏菌的迭代次数, 增大算法的收敛速度; 同时, 引入了Lévy飞行策略优化其收敛准则, 提升算法的随机搜索能力, 进一步提高了算法的追踪速度. 仿真和实验结果表明, 该策略拥有较高的追踪速度和追踪精度, 在各个光照条件下均能快速追踪到最大功率点, 有效提高光伏系统的发电效率.

关键词:光伏发电;最大功率点追踪;局部阴影;Lévy飞行;黏菌优化算法

引用格式: 董密, 胡佳盛, 杨建, 等. 基于改进黏菌优化算法的光伏多峰MPPT控制策略. 控制理论与应用, 2023, 40(8): 1440-1448

DOI: 10.7641/CTA.2022.11268

An improved slime mould algorithm based MPPT strategy for multi-peak photovoltaic system

DONG Mi, HU Jia-sheng, YANG Jian[†], SONG Dong-ran, WAN Jiang-hu

(The College of Automation, Central South University, Changsha Hunan 410000, China)

Abstract: When the photovoltaic array is under partial shading condition, the traditional maximum power point tracking strategy is easy to fall into the local optimal solution and reduce power generation efficiency of the photovoltaic system. In order to solve this problem, a maximum power point tracking strategy based on the improved slime mould algorithm is proposed in this paper. The algorithm changes the boundary conditions of slime mould optimization algorithm based on the characteristics of photovoltaic array, which improves the tracking speed of the algorithm. Meanwhile it used the Lévy flight to improve the convergence criterion of slime mould optimization algorithm, which can improve the random search ability of the algorithm, and further improve the tracking speed of the algorithm. The simulation and experimental results show that the proposed strategy has quickly tracking speed and tracking accuracy, and can quickly track the maximum power point under various lighting conditions and effectively improve the power generation efficiency of the photovoltaic system.

Key words: photovoltaic system; maximum power point tracking; partial shading condition; Lévy flight; slime mold optimization algorithm

Citation: DONG Mi, HU Jiasheng, YANG Jian, et al. An improved slime mould algorithm based MPPT strategy for multi-peak photovoltaic system. *Control Theory & Applications*, 2023, 40(8): 1440 – 1448

1 引言

随着传统化石能源污染大、储量有限等问题的日 益突出,新能源以其储量丰富、无污染、可持续等优点 而备受关注.太阳能作为新能源中最重要的一环,光 伏发电现已成为各种新能源发电中发展最迅速、规模 最大的产业之一^[1].

然而光伏电池的非线性输出特性使如何保持光伏

本文责任编委:张承慧.

系统工作在最大功率点处成为难题.为解决该问题, 各种光伏最大功率点追踪(maximum power point tracking, MPPT)技术广泛运用于功率优化器设计中以提 高光伏系统发电效率.传统的MPPT控制策略如扰动 观测法(perturbation and observation, P&O)^[2]和电导 增量法^[3]等在解决均匀光照强度下的单峰光伏模型时 表现良好,然而在局部阴影遮挡条件(partial shading

收稿日期: 2021-12-24; 录用日期: 2022-08-19.

[†]通信作者. E-mail: jian.yang@csu.edu.cn; Tel.: +86 18974880556.

国家自然科学基金项目(52177204),湖南省自然科学基金项目(2020JJ4744)资助.

Supported by the National Natural Science Foundation of China (52177204) and the National Natural Science Foundation of Hunan Province (2020J J4744).

condition, PSC)下时, 光伏系统的输出P-U特性曲线 不再是单峰模型而是多峰模型, 继续使用传统的MP-PT控制策略容易陷入局部最优解, 导致光伏系统发电 效率降低^[4].

为解决传统MPPT控制策略在PSC条件下容易陷 入局部最优解的问题,国内外学者提出了一些适用 于PSC下的新型MPPT控制策略.这些策略根据控制 方式的不同,可以分为离线型和在线型两种^[5].离线 型MPPT控制策略根据先验条件计算出光伏系统理想 的数学模型,并在后台运用算法找出该模型的最大功 率点实现离线控制,如文献[6]提出的基于灰狼优化算 法的MPPT控制策略和文献[7]提出的基于多重双向 PV-Cuk逆变器的MPPT控制策略. 该类控制策略由于 不需要反馈,故具有追踪速度快、稳态波动小等优点, 但是,由于寻优过程在理想模型上进行,输出没有实 时监控,故可靠性较低、通用性较弱.在线型MPPT控 制策略则实时监控光伏系统的输出功率,根据功率的 实时变化在线调整光伏阵列的输出电压,跟踪最大功 率点,如文献[8]提出的基于粒子群算法(particle swarm optimization, PSO)的MPPT控制策略和文献[9]提 出的基于风功率驱动算法的MPPT控制策略.该类控 制方法不需要先验知识,具有实用性强、适用范围 广、可靠性高等优点,但由于需要根据输出反馈调节, 故调节时间较长、响应速度较慢.

无论是离线型还是在线型的MPPT控制策略都依 赖寻优方法的全局搜索能力^[10],而元启发算法正是针 对大范围优化问题所提出的一种具有优秀全局搜 索能力的新型高效优化方法^[11],可以有效解决传统 MPPT控制策略容易陷入局部最优解的问题.因此各 种元启发算法诸如粒子群算法^[8]、灰狼优化算法^[6]、 蚁群算法^[12]等在MPPT控制策略的研究中得到了广 泛应用.但上述算法的性能仍有一定改进空间^[13].黏 菌优化算法(slime mould algorithm, SMA)是一种新型 元启发算法,其模拟黏菌的扩散和觅食行为,通过各 项权值以及随机函数产生的搜索空间可以使黏菌以 任意方向和任意步长进行寻优,具有全局搜索能力强 的优点^[14],然而其追踪速度还存在一定提升空间.

本文在传统SMA算法的基础上提出了一种基于 改进黏菌优化算法(improved SMA, ISMA)的在线型 MPPT控制策略.该策略在传统黏菌优化算法的基础 上结合光伏阵列的特性,改进了其边界条件,提高了 算法的收敛速度;并且通过引入Lévy飞行策略,优化 收敛准则,进一步提高算法的收敛速度,使其可以更 加快速地追踪到整个光伏阵列的全局最大功率点,提 高光伏系统发电效率.本文首先介绍了光伏阵列的数 学模型,然后介绍了基于ISMA的MPPT控制策略,最 后通过仿真和硬件实验验证该控制策略的优秀性能.

2 光伏电池建模及PSC下光伏阵列特性分析

2.1 光伏电池建模

光伏电池是整个光伏系统的核心部分.工程上常 用理想模型或者单二极管等效电路模型来对其进行 分析研究,其结构如图1所示.

Fig. 1 Structure diagram of photovoltaic cell

光伏电池单二极管模型的等效伏安特性方程可表 示为

$$I = I_{\rm ph} - I_{\rm D} - I_{\rm sh},\tag{1}$$

$$I = I_{\rm ph} - I_0 \left[\exp\left(\frac{q(V + IR_{\rm s})}{AkT}\right) - 1 \right] - \frac{V + IR_{\rm s}}{R_{\rm sh}},$$
(2)

式中: I_{ph} 是光生电流,其大小随着温度和光照强度的 变化而变化; I_D 为流过二极管D的电流; I_{sh} 为流过并 联电阻 R_{sh} 的电流; I_0 是二极管D的反向饱和电流; q是电荷量、I n V 分别为光伏电池的输入电流和输出电压; A 是电池理想饱和因子; T 是绝对温度; k 是玻尔 $兹曼常数; <math>R_s n R_{sh}$ 分别是等效串联和并联电阻.

2.2 PSC下光伏阵列特性分析

本文以BIPRO TD7G72M 530W型号光伏组件为例,其在环境温度为25°C、光照强度为1000 W/m²的标准测试条件(standard test conditions, STC)下的参数如表1所示.

-	
参数	数值/单位
开路电压 $U_{\rm oc}$	49.32 V
短路电流 I_{sc}	13.72 A
最大功率Pmp	530 W
峰值电压Ump	41.32 V
峰值电流 I_{mp}	12.83 A
电压温度系数	−0.26 %/°C
由压湿度系数	$-0.26 \% l^{\circ}C$

表 1 光伏组件STC参数

Table 1 Parameters of photovoltaic module under STC

本文选择如图2所示的3×3光伏阵列为研究对象. 对于串联的光伏组件,一般串联单元并联一个旁路二 极管防止反向电压^[15].当上述光伏阵列中的9个光伏 组件的温度为25°C,光照强度分别为1000,800,500; 1000,600,600;600,1000,1000W/m²时,光伏阵列的 输出I-U、P-U特性曲线如图3所示.

图 2 3 × 3光伏阵列结构图

Fig. 2 Structure diagram of 3×3 photovoltaic array

Fig. 3 I-U and P-U characteristic curve of the photovoltaic array under PSC

3 基于ISMA的MPPT控制策略

3.1 黏菌优化算法(SMA)

黏菌优化算法是由Li等人于2020年提出的新型元 启发优化算法,它模拟黏菌在觅食过程中的行为和形 态变化,通过特殊权值-重量W的更新来模拟觅食过 程中的正负反馈,从而根据黏菌重量W和黏菌适应度 来改变觅食寻优步长,进而进行全局寻优.整个觅食 寻优过程分为接近食物、包裹食物和振荡觅食3个阶 段^[14]. 黏菌根据自身重量以及种群中所有黏菌的适应 度来接近食物,它的逼近行为满足如下表达式:

$$\overrightarrow{X(t+1)} = \begin{cases} \overrightarrow{r(\text{UB} - \text{LB})} + \overrightarrow{\text{LB}}, & r < z, \\ \overrightarrow{X_b(t)} + \overrightarrow{vb} (W \overrightarrow{X_A(t)} - \overrightarrow{X_B(t)}), & r < p, \\ \overrightarrow{vc} \overrightarrow{X(t)}, & r \ge p, \end{cases}$$
(3)

式中: UB, LB分别表示寻优区间的上界和下界; r表 示[0, 1]内随机数; z表示突变概率; t表示迭代代数; $\overrightarrow{X(t+1)}$ 和 $\overrightarrow{X(t)}$ 分别表示该黏菌在第t + 1代和第t代 的位置; $\overrightarrow{X_b(t)}$ 表示第t代适应度最好的黏菌的位置; $\overline{X_A(t)}$ 和 $\overline{X_B(t)}$ 表示第t代随机两个黏菌的位置; \vec{vc} 以 指数形式从1到0逐代减小; \vec{vb} 表示取值范围在[-a, a]内的随机数, 其中a随着迭代次数增加而减小且满 足如下表达式:

$$a = \arctan\left(-\left(\frac{t-1}{\max t}\right) + 1\right),\tag{4}$$

式中max_t表示最大迭代次数.

式(3)中, W表示黏菌重量, 其满足

$$W(i) = \begin{cases} 1 + r \log(\frac{bF - S(i)}{bF - wF} + 1), \ i < \frac{N}{2}, \\ 1 - r \log(\frac{bF - S(i)}{bF - wF} + 1), \ i \ge \frac{N}{2}, \\ i = 1, \cdots, N, \end{cases}$$
(5)

式中: bF表示最佳黏菌适应度, wF表示最差黏菌适应度, r表示[0, 1]间的随机数, N表示黏菌种群个数.

式(3)中, p表示选择概率, 其满足

$$p = \tanh |S(i) - \mathrm{DF}|, \tag{6}$$

式中: *S*(*i*)表示第*i*个黏菌的适应度, DF表示所有代数中黏菌的最佳适应度.

式(3)表示了黏菌优化算法寻优的逼近准则,即黏 菌个体位置 $\overline{X(t+1)}$ 受到适应度最好的黏菌位置 $\overline{X_b(t)}$ 和任意随机黏菌位置 $\overline{X_A(t)}$ 和 $\overline{X_B(t)}$ 影响.因此 黏菌的觅食过程是由全体黏菌共同决定的,通过改变 系数 \overline{vb} 和 \overline{vc} 可以改变算法的寻优性能,而rand随机 函数可以使黏菌以任意角度和长度的搜索向量进行 寻优,跳出局部最优解,具备更高的全局搜索能力.

3.2 改进的黏菌优化算法(ISMA)

传统SMA虽然具有较强的全局寻优能力,但是在 解决光伏MPPT这一特殊问题时,一方面其边界条件 容易导致部分超出边界的黏菌距离最佳适应度的位 置较远,较难回归到最佳适应度位置,导致算法收敛 速度降低;另一方面,当r≥p时,黏菌位置仅以指数形 式减小,不利于全局寻优,具有一定的局限性.因此, 本文在传统SMA的基础上提出新的边界条件,使其适 应光伏阵列输出特性,提高算法的收敛速度;同时采 用Lévy飞行策略改进其迭代过程的收敛准则,进一步 提高其寻优性能.

3.2.1 边界条件

传统的SMA算法由于全局寻优能力的需要,在迭 代前期,指数系数vio和vic以及黏菌重量权重W都较 大,这使得黏菌位置有较大可能在迭代过程中超出边 界.而原算法边界条件的处理方法为:超出上边界的 黏菌取上边界值,超出下边界的黏菌取下边界值^[15], 如式(7)所示,这种处理方法不利于算法的收敛.为了 加速算法收敛、提高光伏系统发电效率,本文提出如 式(8)所示的新的边界条件.该边界条件使得超出范围 的黏菌在迭代次数较小、距离全局最优解较远时,黏 菌受随机系数的影响较大,寻优空间也较大,增强其 全局搜索能力;当迭代次数较高、距离全局最优解较 近时,黏菌受随机系数的影响较小,受最佳适应度位 置的影响较大,黏菌得以更快速地向最佳适应度位置 附近靠拢,使得算法局部搜索能力更强、更容易收敛.

$$\overrightarrow{X(t)} = \begin{cases}
\text{UB, } \overrightarrow{X(t)} > \text{UB,} \\
\text{LB, } \overrightarrow{X(t)} < \text{LB,}
\end{cases}$$
(7)

式中: UB表示取值上界, LB表示取值下界.

$$\overrightarrow{X(t)} = \begin{cases} \overrightarrow{X_B(t)} + c_1 \overrightarrow{v_a} (\text{UB} - \overrightarrow{X_B(t)}), \ X(t) > \text{UB}, \\ \overrightarrow{X_B(t)} - c_2 \overrightarrow{v_a} (\overrightarrow{X_B(t)} - \text{LB}), \ X(t) < \text{LB}, \end{cases}$$
(8)

式中: c₁和c₂表示[0, 1]间的随机数, vā以指数形式从 1逐代减小到0且满足如下形式:

$$\overrightarrow{v_a} = 1 - a_1 (1 - \frac{t}{\max_{-t}})^{(a_2 \frac{t}{\max_{-t}})}, \qquad (9)$$

式中a₁, a₂为调节常数.

3.2.2 基于Lévy飞行的逼近准则

Lévy飞行是由Paul Pierre提出的一种随机游走过程,其特征是在多数的小步长移动中穿插大步长移动,该方法可以有效的提高系统全局搜索能力^[16],其公式定义为

$$\overrightarrow{X(t)} = \overrightarrow{X(t-1)} + \alpha \oplus L, \tag{10}$$

式中: X(t)和X(t-1)分别表示黏菌第t代和第t-1代的位置, \oplus 表示点乘法, α 为飞行步长的缩放系数, L为飞行步长且满足如下表达式:

$$L(\lambda) = \frac{u}{|v|^{\frac{1}{\beta}}},\tag{11}$$

式中: $\lambda = 1 + \beta, \beta \in (1,3), u \pi v$ 均服从正态分布且满 足 $u \sim N(0, \sigma_u^2), v \sim N(0, \sigma_v^2), v$ 的标准差 $\sigma_v = 1, u$ 的标准差 σ_u 服从如下表达式:

$$\sigma_u = \left\{ \frac{\Gamma(1+\beta)\sin\frac{\pi\beta}{2}}{\Gamma[\frac{(1+\beta)}{2} \times \beta \times 2^{\frac{(\beta-1)}{2}}]} \right\}^{\frac{1}{\beta}}, \qquad (12)$$

式中: Γ 表示标准伽马函数. 由式(3)可知, 当 $r \ge p$ 时, 黏菌按照 $\overline{X(t+1)} = v\overline{c} \cdot \overline{X(t)}$ 逼近最优解. 然而此 方法仅在上一代的基础上指数减小, 随机搜索能力和 全局搜索能力可以进一步提高, 引入Lévy飞行, 将式 (3)改为

$$\overrightarrow{X(t+1)} = \begin{cases} \overrightarrow{r(\text{UB} - \text{LB})} + \text{LB}, & r < z, \\ \overrightarrow{X_b(t)} + \overrightarrow{vb} (W \overrightarrow{X_A(t)} - \overrightarrow{X_B(t)}), & r < p, \\ \overrightarrow{vc} (\overrightarrow{X(t)} + \alpha \oplus L), & r \ge p. \end{cases}$$
(13)

即当r≥p时,相比于原SMA算法的黏菌位置按照 指数形式依次减小,新的收敛准则使得黏菌位置在 Lévy飞行的基础上按照指数减小.新的收敛准则不但 增加了迭代次数较小时的搜索空间的随机性,提高了 算法的全局搜索能力,而且可以保证其在迭代次数较 大时有较强的局部搜索能力,提高了算法收敛速度, 使得光伏系统能够更快速追踪到全局最优解.

将改进后的ISMA算法和传统SMA算法在F(x) = sum $(-x \sin \sqrt{|x|})$ 和F(x) = sum $((x + 5)^2)$ 两个测试函数下进行比较,其适应度变化曲线如图4所示.由图4可以看出ISMA算法在收敛精度和收敛速度上均比SMA算法更加出色.

3.3 基于ISMA的MPPT控制策略

为将该ISMA算法应用于MPPT控制策略, 需对其 进行如下初始设计.

3.3.1 黏菌位置初始化

由于对应n组光伏阵列的P-U特性曲线最多拥有n 个峰值,故设置黏菌种群规模N为n.为使黏菌尽可能 分布在整个寻优区间,不遗漏任何一个可能的全局最 优解,故将黏菌均匀分布在寻优区间内,即第1个黏菌 的初始位置设置为0.7U_{oc_module},第n个黏菌的初始位 置 设 置 为0.7U_{oc_module} + 0.8(n - 1)U_{oc_module},其 中U_{oc_module}为单个光伏组件开路电压^[15].

3.3.2 算法终止条件设计

为了使算法在寻找到全局最大功率点后结束迭 代、使光伏系统稳定工作在最佳工作点,该算法在满 足下述任意终止条件时停止迭代:

1) 当迭代次数到达设定的最大次数时,即满足下 式时停止迭代:

$$t > \max_{t} t. \tag{14}$$

该条件表示,若算法在预设迭代次数内仍未找到全局 最优解,为避免陷入死循环,直接终止算法.

2) 当黏菌位置非常集中,每个黏菌之间的距离小于5%U_{oc_array}时,即满足下式时停止迭代:

$$\left|U_i - U_j\right| < 0.05 U_{\text{oc_array}},\tag{15}$$

该条件表示,若所有黏菌足够集中,即全部黏菌收敛 到一个很小的区间,表示算法寻找到全局最优解,可 以终止算法.

3.3.3 算法重启条件设计

当外部光照温度条件或者遮挡情况发生变化时, 需重启算法,改变光伏系统的工作状态以适应光伏阵 列输出特性的变化,本文设计算法重启条件如下:

$$\Delta P = \frac{|P_{\rm real} - P_{\rm m}|}{P_{\rm m}} > 0.1,$$
 (16)

式中: *P*_{real}表示光伏阵列的实时输出功率, *P*_m表示稳定工作时的输出功率. 即当光伏系统稳定工作时, 如果实时输出功率改变量大于10%时, 系统判定外部环境条件发生变化, 需要重新启动MPPT控制策略寻找新的最大功率点.

综上,基于ISMA的MPPT控制策略流程图如图5 所示.

4 仿真分析

为了验证该基于ISMA的MPPT控制策略的可行 性,本文在MATLAB/Simulink仿真平台上建立如图6 所示的光伏系统进行研究.该光伏系统主要由光伏阵 列、BOOST升压电路、MPPT 控制电路和负载4大部 分组成.其中光伏阵列部分由上述的 BIPRO TD7 G 72M 530W型号光伏组件按照3 × 3的形式组成; BO-OST升压电路部分参数选择如下: $C_{in} = 400 \mu$ F, $L = 30 \text{ mH}, C = 80 \mu$ F;负载部为 30 Ω 的纯电阻负 载.为了验证该基于 ISMA 的 MPPT 控制策略的优越 性能,将其与基于 SMA, PSO和 P&O的 MPPT 控制策 略分别在如表2所示的3种不同的光照条件下进行仿 真比较,且环境温度均为25°C.

Fig. 6 Structure diagram of photovoltaic system

Table 2 Three illumination conditions of PV system

	光照强度/(W·m ⁻²)(PV1-PV9)	最大功率/W
无阴影遮挡	1000, 1000, 1000; 1000, 1000, 1000; 1000, 1000, 1000	4770
阴影遮挡1	1000, 800, 500; 1000, 600, 600; 600, 1000, 1000	2712
阴影遮挡2	600, 1000, 500; 600, 600, 800; 1000, 1000, 1000	3324

4.1 无阴影条件下的仿真结果

光伏阵列在无阴影遮挡条件下时,仿真条件设置为STC,则基于4种MPPT控制策略的光伏系统输出功率仿真波形分别如图7(a)--(d)所示.

(b) 基于SMA算法的光伏系统输出功率波形

由图7可知,在该条件下,4种算法均可追踪到该光 伏系统的实际最大功率4770 W附近,具体工作情况如 表3所示.P&O算法用时0.04 s就到达最大功率 4740 W,功率损耗为0.63%; SMA和PSO算法分别用 时0.56 s和1.72 s到达最大功率,功率损耗分别为 0.63%和0.65%; ISMA算法相较于前两种算法在追 踪速度和追踪精度上更好,用时0.46 s到达最大功率 4741 W,功率损耗为0.61%,相较于SMA和PSO算 法提高了约17.86%和73.26%的追踪速度.

表 3 无阴影条件下4种MPPT控制策略的工作情况 Table 3 Performance of 4 methods without shadow

	寻优时间/s	稳态功率/W	功率损耗/%
ISMA	0.46	4741	0.61
SMA	0.56	4740	0.63
PSO	1.72	4739	0.65
P&O	0.04	4740	0.63

4.2 局部阴影遮挡条件下的仿真结果

光伏阵列在阴影遮挡条件1下时.采用基于4种算法的MPPT控制策略的光伏系统输出功率仿真波形分别如图8(a)--(d)所示.

由图8可知,在局部阴影遮挡条件下,基于ISMA, SMA和PSO的MPPT控制策略都可以追踪到该光伏系 统的实际最大功率2712 W附近,但是P&O算法在到 达局部最优解附近便停止工作,未追踪到全局最大功 率点,4种算法的工作情况如表4所示.SMA和PSO算 法分别用时0.73 s和1.95 s到达最大功率点,功率损耗 分别为0.96%和0.99%; ISMA算法则仅用时0.57 s到 达最大功率2686 W并维持稳定, 功率损耗约为0.96%, 相较于SMA和PSO算法提高了21.92%和70.77%的追 踪速度.

4.3 变化的阴影遮挡条件下的仿真结果

光伏阵列处于变化阴影遮挡条件下时,光照强度 由阴影遮挡条件1变化为阴影遮挡条件2,采用基于 4种算法的MPPT控制策略的光伏系统输出功率仿真 波形如图9(a)--(d)所示.

衣 4	同部内彰	下4种MPP」	[控刑束略	的工作值仍
Tab	le 4 Perfo	ormance of 4	methods	under PSC

	寻优时间/s	稳态功率/W	功率损耗/%
ISMA	0.57	2686	0.96
SMA	0.73	2686	0.96
PSO	1.95	2685	0.99
P&O	0.04	2115	22.01

(a) 基于ISMA算法的光伏系统输出功率波形

(b) 基于SMA算法的光伏系统输出功率波形

(c) 基于PSO算法的光伏系统输出功率波形

由图9可知,在该条件下,基于ISMA, SMA和PSO的MPPT控制策略均可追踪到该光伏系统的最大功率

点附近,并当遮挡条件改变时也能及时重启算法到达新的最大功率点,而P&O算法则会陷入局部最优解. 4种算法的工作情况见表5. SMA算法用时0.59 s左右 到达阴影遮挡条件1的最大功率2684 W,功率损耗约 为1.03%,并用时0.91 s追踪到新的最大功率3290 W, 功率损耗约为1.02%; PSO算法用时1.53 s左右到达阴 影遮挡条件1下的最大功率2685 W,功率损耗约为 0.99%,并用时1.58 s追踪到新的最大功率3290 W,功 率损耗约为1.02%; 而ISMA仅用时0.43 s左右便到达 阴影遮挡条件1下的最大功率2684 W,功率损耗约为 1.03%,并用时0.50 s追踪到新的最大功率3291 W,功 率损耗约为0.99%,较于SMA和PSO提高了约32.00% 和70.09%的追踪速度,且功率损耗更小.

去 5	亦化阳影下1种MD	DT拉制等败的工作	冶桔刀
12.1		1 IIN RANL	

 Table 5 Performance of 4 methods under varying shading condition

	寻优时间/s	稳态功率/W	功率损耗/%
ISMA (阴影1–阴影2)	0.43~0.50	2684~3291	1.03~0.99
SMA (阴影1–阴影2)	0.59~0.91	2684~3290	1.03~1.02
PSO (阴影1–阴影2)	1.53~1.58	2685~3290	0.99~1.02
P&O (阴影1–阴影2)	0.04~0	2115~2115	22.01~34.39

5 实验验证

为进一步验证所提出的基于ISMA的MPPT控制 策略的可行性,搭建如图10所示的光伏实验平台,其 主要由光伏阵列、光伏功率优化器和负载3大部分组 成.其中光伏阵列部分由3×3的XKD-30W型号光伏 组件组成,每个光伏组件的参数如表6所示;光伏功率 优化器集成在基于"进芯"ADP32F10A型号芯片的开 发板上,由BOOST电路部分和基于ISMA算法的MP PT控制器部分组成;负载选用30Ω恒阻值负载.

图 10 光伏实验平台 Fig. 10 Photovoltaic experimental platform

	表 6 光伏组件	STC参数	
Table 6 Pa	arameters of photov	oltaic module	under STC
	参数	数值/单位	
	开路电压Uoc	31.5 V	

31.5 V
2.5 A
30 W
18.5 V
1.5 A

实验分别在无阴影条件和PSC条件下进行,光伏 阵列在这两种条件下的输出P-U曲线如图11所示.采 用基于P&O和ISMA算法的光伏系统在这两种条件下 的输出电压、电流和功率波形分别如图12-13所示.电 压和电流信号均采用×10档位表笔测量.

图 11 光伏阵列在两种光照条件下的输出P-U曲线 Fig. 11 Output P-U curve of PV array under two illumination conditions

由图12可知,在无阴影遮挡条件下,ISMA算法和 P&O算法都可以跟踪到最大功率点(55.3 V, 247.2 W) 附近.其中P&O算法追踪速度更快,仅用时0.12 s便追 踪到最大功率点,此时光伏系统输出电压约为54.2 V, 输出功率约为227.6 W,功率损耗约为7.93%; ISMA 算法则稳态精度更高、功率损耗更小,用时0.42 s到达 最大功率点,光伏系统的输出电压约为55.0 V,输出功 率约为231.0 W,功率损耗仅约为6.55%.

图 12 无阴影遮挡下光伏系统的输出波形

Fig. 12 Output waveform of PV system without shadow

由图13可知,在局部阴影遮挡条件下,ISMA算法可以跟踪到最大功率点(66.2 V, 199.3 W)附近,而P&O算法陷入了局部最优解.其中P&O算法用时0.10 s

点,光伏系统的输出电压约为65.1 V,输出功率约为 198.5 W,功率损耗仅约为0.35%,相较P&O算法降低 了14.86%的功率损耗,展现出更好的性能.

综上,所设计的基于ISMA算法的MPPT控制策略 在无阴影遮挡和部分阴影遮挡条件下均可以快速准 确追踪到光伏系统的全局最大功率点,极大地提高光 伏系统的发电效率,具有充分的可行性.

6 结论

本文针对局部阴影遮挡条件下,光伏阵列的输出 功率曲线呈现多峰模型时,传统MPPT控制策略容易 陷入局部最优解的问题,提出一种基于ISMA的在线 型MPPT控制策略.该控制策略在SMA的基础上,优 化了其边界条件和收敛准则,提升了算法的全局搜索 能力,提高了其追踪速度和追踪精度,使光伏系统的 发电效率得到有效提高.通过仿真和实验结果分析可 得如下结论:

1) 所提出的基于ISMA的MPPT控制策略在无阴 影遮挡、局部阴影遮挡和变化阴影遮挡条件下都拥有 良好的性能,具有普适性.

2) 所提出的基于ISMA的MPPT控制策略相比于 基于P&O的MPPT控制策略在局部阴影遮挡条件下表 现更好,可以有效地提高系统发电效率,具有良好追 踪精度.

3) 所提出的基于ISMA的MPPT控制策略相比于 基于SMA和PSO的MPPT控制策略可以大幅缩短系 统的追踪时间,具有良好的追踪速度.

参考文献:

 WU Jie, YANG Junhua. Control on green energy source and ecologic environment. *Control Theory & Applications*, 2004, 21(6): 864 – 869.
 (吴捷,杨俊华. 绿色能源与生态环境控制. 控制理论与应用, 2004,

(天徒, 彻俊平. 绿巴能源与生态环境控制. 控制理论与应用, 2004, 21(6): 864 – 869.)

- [2] FEMIA N, PETRONE G, SPAGNUOLO G, et al. A technique for improving P&O MPPT performances of double-stage grid-connected photovoltaic systems. *IEEE Transactions on Industrial Electronics*, 2009, 56(11): 4473 – 4482.
- [3] WANG Jianshan, YANG Yi, YANG Yuanpei, et al. Research on multi peak MPPT algorithm based on equal power curve method. *Solar Energy Journal*, 2019, 40(2): 563 571.
 (王建山,杨奕,杨元培,等.基于等功率曲线法的多峰值MPPT算法研究.太阳能学报, 2019, 40(2): 563 571.)
- [4] CHANDRASEKAKAN K, SANKAR S, BANUMALAR K. Partial shading detection for PV arrays in a maximum power tracking system using the sine-cosine algorithm. *Energy for Sustainable Development*, 2020, 55: 105 – 121.

- [5] MANSOOR M, MIRZA A F, LING Q, et al. Novel grass hopper optimization based MPPT of PV systems for complex partial shading conditions. *Solar Energy*, 2020, 198: 499 – 518.
- [6] ELTAMALY A M, FARH H M H. Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC. *Solar Energy*, 2019, 177(1): 306 – 316.
- [7] MAO M, ZHANG L, YANG L, et al. MPPT using modified salp swarm algorithm for multiple bidirectional PV-Cuk converter system under partial shading and module mismatching. *Solar Energy*, 2020, 209: 334 – 349.
- [8] SARVI M, AHMADI S, ABD S. A PSO-based maximum power point tracking for photovoltaic systems under environmental and partially shaded conditions. *Progress in Photovoltaics*, 2015, 23(2): 201 – 214.
- [9] ABDALLA O, REZK H, AHMED E M. Wind driven optimization algorithm based global MPPT for PV system under non-uniform solar irradiance. *Solar Energy*, 2019, 180: 429 – 444.
- [10] BOLLIPO R B, MIKKILI S, BONTHAGORLA P K. Hybrid, optimal, intelligent and classical PV MPPT techniques: A review. CSEE Journal of Power and Energy Systems. 2021, 7(1): 9 – 33.
- [11] ISHAQUE K, SALAM Z, AMJAD M, et al. An improved particle swarm optimization based MPPT for PV with reduced steady-state sscillation. *IEEE Transactions on Power Electronics*. 2012, 27(8): 3627 – 3638.
- [12] DORIGO M, BLUM C. Ant colony optimization theory: A survey. *Theoretical Computer Science*. 2005, 344(2/3): 243 – 78.
- [13] YANG Bo, ZHONG Linen, ZHU Dena, et al. Modified salp swarm algorithm based maximum power point tracking of power-voltage system under partial shading condition. *Control Theory & Applications*, 2019, 36(3): 339 352.
 (杨博, 钟林恩, 朱德娜, 等. 部分遮蔽下改进樽海鞘群算法的光伏系 统最大功率跟踪. 控制理论与应用, 2019, 36(3): 339 352.)
- [14] LI S, CHEN H, WANG M, et al. Slime mould algorithm: A new method for stochastic optimization. *Future Generation Computer Systems*, 2020, 111: 300 – 323.
- [15] ZHU Yanwei, SHI Xinchun, DAN Yangqing, et al. Application of P-SO algorithm in global MPPT for PV array. *Journal of Chinese Electrical Engineering Science*, 2012, 32(4): 42 – 48. (朱艳伟, 石新春, 但扬清, 等. 粒子群优化算法在光伏阵列多峰最大 功率点跟踪中的应用. 中国电机工程学报, 2012, 32(4): 42 – 48.)
- [16] FAGETO J, FALLAH A, HOREL T. Entropic compressibility of Lévy processes. *IEEE Transactions on Information Theory*, 2022, 68(8): 4949 – 4963.

作者简介:

董密教授,博士生导师,目前研究方向为智能电网、太阳能发电及人工智能, E-mail: mi.dong@csu.edu.cn;

胡佳盛硕士研究生,目前研究方向为太阳能发电、优化算法, E-mail: 1013368398@qq.com;

杨 建 教授,博士生导师,目前研究方向为电力电子、运动控制 及人工智能,E-mail: jian.yang@csu.edu.cn;

宋冬然 副教授,硕士生导师,目前研究方向为新能源发电及成本 优化, E-mail: humble_szy@163.com;

万江湖博士研究生,目前研究方向为电力电子、运动控制及新能源发电, E-mail: wanjianghu@csu.edu.