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Multi-rate sampled and delayed output feedback stabilization for
multi-output nonlinear systems under data truncation protocol

SHEN Tong', QIAN Bin!f, ZHANG Dao-yuan?

(1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming Yunnan 650504, China;
2. Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University,
Yichang Hubei 443002, China)

Abstract: Multi-rate sampled and delayed output feedback control law is presented for a class of multi-output nonlinear
systems under a kind of data truncation protocol. The system outputs are sampled in a fully asynchronous way, transmitted
through communication network, and used to construct the output feedback stabilizer immediately when they are available.
The nonlinear system is updated by the system inputs once they are available. There exist two kinds of transmission delays,
i.e., transmission delays from the nonlinear system to the output feedback stabilizer, and transmission delays from the output
feedback stabilizer to the nonlinear system. Therefore, the output feedback stabilizer and the nonlinear system are updated
at different time instants. Based on interval decomposition, we put the output feedback stabilizer and the nonlinear system
on the same interval to analyze stability of the closed-loop system. An example is provided to illustrate the efficiency of

the proposed methods.
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1 Introduction

The problem of global stabilization of nonlinear
systems has made great progress in the past years!'™l.
For instance, the author in [1] investigated global stabi-
lization for a class of single-input nonlinear systems by
state feedback. By constructing a linear state feedback
control law, the closed-loop systems could be global-
ly exponentially stabilized. In [2], state feedback con-
troller was constructed for a class of nonlinear contin-

uous systems based on a simple methodology. Howev-
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er, it is not easy to extend the result from state feed-
back to output feedback for nonlinear systems with un-
certain nonlinearities. By presenting a “Tikhonov-like”
theorem, an observer-based controller was designed to
stabilize a fully linearizable nonlinear system in which
there exist uncertain nonlinearities!®. This idea was
also applied for a class of single-input-single-output
(SISO) systems!*!, which was then extended to multi-
input-multi-output (MIMO) systems®).

However, the aforementioned studies about output
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feedback stabilization are on the basis of continuous
time analysis. More recently, sampled-data observ-
er and sampled-data output feedback stabilization for
nonlinear systems have received more and more atten-
tion. For linear systems, it is usual to design sampled-
data observers and sampled-data output feedback con-
trol laws on the basis of the exact discretized model of
the continuous systems. For nonlinear system, its ex-
act discretized model is usually difficult to obtain. In
order to overcome the difficulties, three main approach-
es are introduced as follows: i) The first approach is
discrete-time design in view of an approximate exac-
t discretized model!'%!!!. i) The second approach is
continuous-time design and discrete-time implementa-
tion!">~'¥_iii) The third approach is continuous-discrete
design based on continuous-time model without dis-
cretization!™ 22! For instance, an explicit formula has
been proposed in [15] to guarantee stability of nonlinear
sampled-data systems with an emulated controller. The
closed-loop system is required to be transformed into
the form of a hybrid system introduced in [23]. In [24],
sampled-data and delayed observer is designed for non-
linear systems under two different kinds of truncation
protocols, static truncation and uniform truncation. A
sampled-data output feedback stabilizer has been pro-
posed for a class of single-output nonlinear systems vi-
a linear sampled-data control without considering time
delay!"”. The results in [20] are the extension of those
in [19] by taking time delay into account. However, the
upper bound of time delays is assumed to less than the
sampling period. In [21], a relaxed condition of time
delay is derived for the single-output nonlinear system,
that is, the time delay may be larger than the sampling
period. But, even if the sampled and delayed outputs
are available, they aren’t applied to update the stabilizer
immediately. In [25], an observer design was proposed
for multi-output nonlinear systems, in which there exist
multi-rate sampled and delayed outputs. The sampled
and delayed outputs are used to design the observer im-
mediately once they are available.

For a sampled-data system, its outputs are usually
sampled by transducers and transmitted via communi-
cation channels. The values of sampled data from trans-
ducer are usually not the true values of the original data
with measurement errors. However, in [18,20-21, 25—
27], the values of sampled data are directly utilized to
design observers or output feedback control laws, ne-
glect of the effect of measurement errors. Therefore, it
is of great practical significance to research output feed-
back stabilization for multi-output nonlinear systems
with multi-rate sampled and delayed measurements by
taking the effect of measurement accuracy into account.
In this paper, the considered system outputs are sam-
pled in a fully asynchronous way and transmitted under
a kind of data truncation protocol as in [24]. They are

used to update the output feedback stabilizer whenever
they are available. The nonlinear system is also updated
by the system inputs once they are available. There ex-
ist two kinds of transmission delays, i.e., transmission
delays from the nonlinear system to the output feedback
stabilizer, and transmission delays from the output feed-
back stabilizer to the nonlinear system. Therefore, the
output feedback stabilizer and the nonlinear system are
updated at different time instants. In order to analyze
stability, we propose a method of interval decomposi-
tion and take the output feedback stabilizer and the non-
linear system on the same time interval into considera-
tion. Based on a Lypunonv-Krasovskii function, suffi-
cient condition is also derived to guarantee that the pro-
posed output feedback stabilizer can globally uniformly
stabilize the multi-output nonlinear systems.

This paper is organized as follows. In Section 2,
we present our main aim of this paper, and some defini-
tions and some useful results. An output feedback sta-
bilizer is proposed for a class of multi-output nonlinear
systems with multi-rate sampled and delayed measure-
ments under the static data truncation in Section 3. In
Section 4, an example is provided to illustrate the va-
lidity of the proposed design methods. This paper con-
cludes in Section 5.

2 Preliminaries

In this paper, our purpose is to design an output
feedback controller to stabilize a class of multi-output
nonlinear systems in the form of

{x(t) = Ax(t) + B(z(t),t) + E(u(t)), 0
§(t) = Cz(t) = [Ciz'(t) -+ Cpa™(t)]",
where

0---00

1---00
A=diag{A;, Ay, -, A}, A= S )

0---10 -
B(x(t),t) = [b'(z(t), )" - 0" (x(t),)"]",
E(u(t)) = [(Byu(t)" (Emum ()],
E;=1[00 Uiy, C = diag{Cy,Cs,-+,Cp},
Ci = [1 0 --- 0}1><)\i7

x(t) € R™ is the system state, u(t) € R™ is the sys-
tem input, §(t) € R™ is the system output, x(t) =
[z ()T ™ ()T, 2i(t) € RM(1 < i < m)is
the ith partition of the state z(t), u(t) = [uy(t)
un (O GO =[G:(8) -+ Fm(O]7, 5:(t) =Ci" (1)
The 7th block of system (1) can be rewritten by
5(t) = 25 (1) + by (a(O) s afy (1), 1),
j=1, N — 1,
&5, (8) = wi(t) + b, (2 ()], 50 0),
2)
where () is the jth element of the ith block z*(t),
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and z(t)H = [z (#)" --- 2*(t)"]Tand z(¢)f, ;= 3 Multi-rate sampled and delayed output
[z4(t) ' (t)]". The unknown nonlinear terms feedback stabilization under the static da-

bi(-) are assumed to satisfy the following condition
with a constant [; > 0,

\b;()| — \bﬁ(xl, .. ,xi_l;xi, e ,x;,t)\ <
h(lay] + fwaf + -+ [af]). (3)
We also assumed that the system output 7;(¢) is mea-
sured at the sampling instants ¢; and only y;(t.) =

h; (gjl(tk)) can be available. The sequences {t.} (i =
1,2, m) are strictly increasing and satisfy hrf th

:+oof0rz—1,2, ,m,and T" =t} , —t;. Inad-
dition, each function h;(-) denotes a data truncation of
the sampled data, whose definition is given as follows.

Definition 11! The functions h;(-)(i = 1, -+ -,
m) are said to be data truncation at the sampling in-
stants ¢} or static data truncation, if the following in-
equalities

[hi(@) () — 21 (B) < el i =1, ,m (4)
hold, where ¢i > 0 denote absolute error limit.

The sampled-data output feedback control system
with network-induced delay is shown in Fig. 1. 7}
(k > 0) is the network-induced delay from sampler to
the stabilizer of block 7 and di, is the network-induced
delay from the stabilizer to the zero-order hold (ZOH).
We assume that 7} < 7; and di. < d;. Note that the
output updating signal at the instant ¢} has experienced
signal transmission delay 7/ from sampler to the stabi-
lizer and then the control updating signal experienced
signal transmission delay d:, from stabilizer to the ZOH
(see Fig. 1).

x(t)
Physical plant
uy(?) ui(t)
ZOH Sampler
Transmission Transmission
delay d, delay ¢,

L Output feedback stabilizer

Fig. 1 Output feedback system with network-induced delays

The following inequality is also useful for our main
results.

Lemma 1281 For any positive definite matrix U €
R™ " scalar v > 0, vector function w : [0,7] — R"
such that the integrations concerned are well defined,
the following inequality holds

[j(: 7vU(5)dL9]TU[L7 w(s)ds] <

'y[f(: w(s)TUw(s)ds].

ta truncation

In this section, the output feedback control law in
the form of

#(t) = &4, (8) + Lai(y:(t}) —
j:17 7Ai_17
L/\ aA (ya(t},) —

#1(t),

1 (t)); )

te [t;c + Tkvtk+1 + Tk+1)7
i‘;‘(t;ﬂ +Th) = ) lim ( ),
ottt
Z:laza y 1M, ] 7)‘i7k>07

—[LIRE () + LY R (1) + -+
Lk}, @5, (6], t € [t + Tho iy + Tipr), K20

(6)
is proposed to stabilize the system (2) with the data
truncation (4), where to = t; and L; > 1, a}, k}

(1 <i<m,1<j < )\;) are some parameters. Since
the outputs y;(t) are sampled at different rate, (5)—(6) is
called multi-rate sampled and delayed output feedback
stabilizer.

From (2)(5)—(6) and the control scheme shown in
Fig. 1, we have

FE() = 4 (1) + 0 (), (0), 1),
j=1,--- A —1
= —[LYKIZL(t) + - -

9

5 (t) -+ LKL 25 (t)]+
b, (x () () ), 1),
t € [th + 7 + diy thr + Tign + diyn)-
(7
Remark 1  Usually, the transmission delays 7;, and

}; are unknown. However, we can obtain the time instants
that the inputs u;(¢) ¢ = 1,---
the nonlinear system (1) is updated automatically once u;(t)
G=1,---

4 Remark 2 For‘the system (5), when t € | 2—}—7—,2, t2+1+
Tha1)» Yi(ty,) — 21(t) and w(t ) are constants, thus the sys-
tem (5) is continuous on [t} + 7, tk+1 + Tk+1) Moreover,
j( ), then the

,m) arrive. In another word,

,m) are available.

note that &% (t,Cle + Tk+1) = lim
t—t S

kb1 T Tt
system (5) is continuous. For the same reason, we can obtain
that the system (7) is also continuous.

Note that the systems (5)—(6) is updated at the time
instant ¢, 4+ 7/, and the system (7) is updated at the d-
ifferent time instant i + 7/ + di. In order to analyze
the stability of the closed-loop system, we assume that
the time delays d, and 7{ satisfy di, < m,T" and 7}, <
my T for all k > 0, where 1m, and /M, are two positive
integers. Then, t§ + 74 + di. < ti + (my + my)T" and
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bty +Tho Fdiyy < th+ (Mq +me+ 1)T". There-
fore, there exist two positive integers my, < m; + Mo
and my, < my + Mo + 1 such that

t+7i+dj €

[tfﬁmk + T/::+mk1 ) t}c+mk1+1 + leerlirl)
and

thpr + Topr T dipr €
[tk—i-mk + 7—k-i-m,C atk-|-m,C 41T Tk+mk +1)
Without loss of generality, let my, < my,. Then,
[t} + 70+ d?;,ti-ﬂ + Tli-&-l + d2+1) =
mkz—l

U [t2+s + Tli-;-sv t2+s+1 + 7—Ii-i-s+1) U

s:mk1+1
i i i i i
[ty + 7% + d, tk+mk 41T Trtmu, +1) U

[t; ktmy, T Tk-i—mk ey + T +diyy). ®)

With the interval decomposition (8), we can consid-
er the systems (5)—(6) and the system (7) on the same in-
terval. When ¢ € [t} + 7 +di, tpn, 41+ T, +1)>
the output feedback control law is given as
Ti(t) =

J
A;+1( ) + Lfa;( i(t %erk ) — (t?wrmkl))
]_1> 7)\1'_15
B0 = ©
wi(t) + L3y, (Uit my, ) = B Gy, )
t € [ty + 7 +d, t;c+mk1+1 + Tk+mk1+1)7

1=1,2,---,m,
and
ui(t) =
[LA kl Az(ﬁwmk )+ -+ L k‘l 5 ( k+mi, )l

t € [t + T iy Uy 1 iy, 1)
(10)
From (7)(9)—(10), we have
ej(t)_ _7+1( )+ LJ ( ( }‘c-l-nu\l)_
h( (thmk )= Llajei (tism,, ) +0,
&, ()= o a<;+mkl>+-~+

Lk}, 25, (Ghgm,, )] — [L2 KL (8)+
4 LikS, 2, ()]

L a), (1 (tmy,) — D@Lty ) —
LYial el (t fam, ) 0%,
te[th+ritdi,t
1=1,2,---,

i
k+mk +1 +Tk+mk1 +1)a

7

1)

Vol. 34
and
B (1) = &y ()L (g, )= (),
=1\ -1,
@ (t) =
(L RAB (B, ) + 7o+ Liks, 8 (g, )]

B ot )~ 84, )
t € [t + 7. +d, 7tk+mk1+1 + le+mkl+1)»

1=1,2,---,m,
12)
where ¢! (t) = x;(t) () (1<i<m,1<j<N)
and e(t) = [0 ()T ()T, ) =

[ei(t) - el (0", -
Using the same method, when t € [t} + 7/,

st T Thiss1)s 8 = My, +1,--+ , my, —1, we have
éé‘(t) g+1( )+LJ ( ( i:+s) D (x1< k:+s)))_
Liaiel(ti, ) +bi,j=1,- A1,
&, (1) = [L kit (th, )+ L ‘1k5x2( N
Lik§, 5, (thy )] — LIRS (1) + -+
Liks, @3, (8] + Ly al, (2} (thy ) —
hi(2i(thys)) — L3y ei(tiy,) + by,
telt ks T Tk+e?tk+9+1 + Tk+9+1)
t=1,---,m, s=my, +1,---,my, — 1,
(13)
and
Fi(t) = 01, (1) + Llal (yithy,) — 25 (Hss)s
J=1o A1
2, (t) =
—[LIRE (ty ) + oo+ Lik 25, ()] +
Lz’-\iagi (yi(tZJrS) (ﬂﬁs))
te [tk-i-s + Thpss togstr T Tk-l—s-‘rl)
1=1,---,;m, s=my, +1,- ey — 1.
(14)

Whente [tﬁmk +Tli+mk ) t2+1+7'li+1+d§c+1)v we have

ety =elyy (8) + Liak (@ (g, )~
hi(z (t2+mk ) — Liaiei (thm,, ) + b,
g=1-- -1,

&, ()= (LYK (tgm,, )+
Liks, @5, (Fgny, )] = (L3RI (5) 4
Liky, @5, (6] + L al, (23 (t g, ) —
ha(] (t g, ) — L2 a5, €4 (B, ) +0A

telt k+my, +Tk+mk2 o1 T i),
1=1,2,---,m

)

5)
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and and
:%;(t) - x]-‘rl( )+LJ Z(yl( 2+7rzk2)_:%i( Z+77Lk2))7 j;(t) = ‘%;-‘rl(t) + Lia; (yi(to) o i‘il(to))’
j=1-- N1, j=1,--, -1,
z (t) = —[LM K2 (t - )+ T (t) = —[Lfk:iﬁ:ﬁo + 4 Lk 2, 4+ (22)
L3 k3@ (Hny, )+ et Ly ah, (yi(to) — &1 (to)),
leg\li-)\b( k+mk2)]+ te [t07t0+7_(§) 1= 1727"' ,m
L)‘iaf\ (yi(t§c+mk2) 1 (t; [ ) Whent € [ti+7!, ti  +7,),s=0,--- ,mg, — 1,
te[thmk +Tli+mk27tk+1+7k+1+dk+1)v we have ' o
=12, é5(t) = €4, (1) + Liaj(x} (1)) — hy(i ()~
(16) Llal et +b, g =1, N -1,
During the time periods [to,to + 7¢) (i = 1, e, (t) = (LN k() + LY k@b (t) + - +
,m), we set Lk}, 25 (1)) — [Lfki:i"llo 4+ 4
24 ni Lt At kl 7 4T\ _
xj (t) = xj+1( ) + LJ (yl(tO) - 1'1 (to)) lek?x%rio] + L’L)\va/\:i (xll (té) ‘
J=1,- A —1, hi(:ri(tl)))—L'Za&iei(ti)er&N
B, (6) = wi(t) + Ll (w(to) — 24 (t0)), LE Tt + 7t + i),
tE[tO,t0+T8), a7 1=1,2,---,m, s=0,---,mg, — 1,
Th(to+75) =  lim (1), (23)
t—to+74 " and
i:1727"'7m7j:17'”7>\17 24 ag i ; N
T5(t) = &5, (1) + Liaj(yi(ty) — 21(27)),
and =1, A — 1
. . J=1L1 A= 1
it:_Lﬁik“l LY ED 4. . o o
wl) = e T B4, () =~ (LN R (1) + L3 Ry 1)+ -+
o Ll L etk ), A8 Liki, i, (ti)]+L?7"aii, (ys(t) 21 (t),
where xjoA(?’ =1,--- ,'m,‘.] =1,---,\)arethe 11'11t1a1 te [tz + 7, S+1 + TsiJrl)?
values of 2 (t) at the time instants ¢,. For the nonlinear i—=1.9.. S=0. - e —1
system (2), we also set u;(t) = —[L}kidi + -+ + S o (.24)
Lik;, 25, ], t € [to,to + 7§ + dj)). Then, _ o
iy ; P When ¢ € [t!, o, —I—Tmo ,to + 74 + df)), we have
xj(t) = ]—H( )+b (z(t )[1’ 1];x[1,j](t)7t)7 ~ ' O_ 0
.]_]-7 a)‘z_]-a e;(t) j-‘rl( )+LJ ( Z(tl )_
@4 (t) = —[LMKidt + -+ Liki 4, ]+ (19) fmlﬁhjh Uae( o) b

by, (x(t)[l’i_”?*T(t)ﬁ,)\i]at)7
t € [to, to + 75 + dj).
There also exists a pos1t1ve 1nteger mo, < m1 + me

such that to+7¢+d} € [t +7'mo ) tmo 17T T, 1)-
Then we have

[to,to + Tg + d%) =

m01—1 )
[t07 tO + TS) L—J() [tl + 7—9’ 9+1 + T;—&-l)
Ulthn,,

to + 75 + df).-
By using the same method, when ¢ € [to,to + 74),
from (17), (18) and (19), we have

+ 7! (20)

mo, ?

éi(t) = €, (t) + Liaj (! (to) — hi(x}(to)))—
Lla el(to)—l-b},j:l, A — 1
e, (t) = LY al, (z(to) — hi(zi(to)))—

L?iag\,;ezi(to) + biq,’
te [to,t0+Té), Z: 1,2,"' ,m,

21

.j = 1 Al - 17

(L k&S () + L3 ka2 (8, )+
-t Lik’xil’xi (o, )] — (L3 ki &5, +
b Liks, 23, )+ L as, (5 ()=

&, (1) =

h“l(:Ell(tZ ))) LA a“)\ 61( k4+my, )+b1)\17
telth, +Tm0 o+ Te 4+ dY),
i = 17 2> e, M,
(25)
and
Fit) = 3 (1) + T (a(thn, ) — 358, ),
jzla 7Ai_17
25, (t) = — (LY K2 (t,,, )+ L2 k35t )+

s Lk 25, (6, )]+
La, (3i(th, ) — F(th ),
t € [tzno + TZ”Lol ? to + TO + d%))’
1=1,2,.

(26)
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Definition 2 We say that the system (2) under the
condition (4) is uniformly ultimately stabilizable, or the
closed-loop system (2)(5)—(6) is uniformly ultimately
bounded, if there exists an n dimensional dynamic sys-
tem (5)—(6) and two positive constants §, 7" (eg, d) such
that

[Z)<0, 2(t) —z(t)]| <6, Vi>to+T"(eo,6), (27)

where eg = xg — g € R™. Moreover, if for any
zo € R" and £, € R", there exists an n dimension-
al dynamic system (5)—(6) and constants J, 7"(eg, 0)
such that (27) holds, then the system (2) under the con-
dition (4) is globally uniformly ultimately stabilizable,
or the closed-loop system (4)—(6) is globally uniformly
ultimately bounded.

Let n;(t) = t —t}, v(t) = t — t;lc and 0, =
xi(t) — hy(x(tL)), where k is given by
0, t€ [to,to—f—Td), .
s, tE[t1+T,S+1+Tg+1),

s=0,1,--,mg, — 1,
mo, s te [tin0 + Tf,ml o+ 18+ diy),
k+my,, t €t +T,;+d‘

ety +1 T Thopma, 1)
tE€ [this +Tk+s7 trstt +Tk+s+1)
s=my, + 1,0 my, — 1,
k +mk2> le [ k+mk _|_7_Izcl+m;C )

b1t Tt dk+1)

Then ¢}, and ¢ can be expressed by
te =t —mni(t), th =t — (1), (28)

e
I

k+ s,

where
mi(t) =t =t <ty + Ty T dipy
(my +my + 1T,
Yi(t) = t—tt <t—t}, < (M +ma+1)T", [6;| <.
Denote @; = (my +my + )T, i=1,2,--- ,m
Consider a change of coordinates as follows: 5’1 =
eI, 2l —x/LA 1<i<m, 1< <\,

_tig

where)\’—Z)\k—i—j A<i<m1<g <A\
Then the error systems can be rewritten by

( ) L. €j+1( ) — Lzazell(t) 4+ Lza;91+

. . ; bi‘
Liaj(ei () =i (t=(0)+—

& (t) =
—L;al €1 (t) + Lal 0+ (29)

o b’
Liay, (£1(¢) -

— et (t—v(0)) + LA;f—l +

L)-
_ni(t))L

Lilky 23 (t=i(t)) 4+ - +k3, 24, (E
Lilkizi (t— nz(t))+---+k31231(t

and (26) can be written by
( ) L; Z]+1( ) — Lﬂl;@i + Lla;€l1 (t)—
Liaj(e1(t) — €1t — %(t)),
]:17 7)‘i_17
2, (t) = —Lia},0; — Li[kiz{(t — () + -+
RS2, (8= i) + Lial 1 (t)—
Liaj, (e1(t) — 1t — (1)),
1=1,2,---,m, t > tg.

(30)

Remark 3 Note that the systems (5) and (7) are updated
based on the updated information y; (tfﬁ) and #° (t}c) on intervals
[ Z‘*‘Tliv t;ﬁ-l +Tli+1) and [ Z‘*‘Tli +d 7t;;+1 +Tli+1 +d7l;c+1)’
respectively. In order to facilitate stability analysis, the inter-
val decomposition (8) is introduced to take the system (5) and
the system (7) into consideration on the same interval. First-
ly, based on the interval decomposition (8), we obtain three
kinds of closed-loop system on three different time intervals.
Then based on the transformations (28) and the change of co-
ordinates, the unified closed-loop system (29)—(30) is derived,
which is convenient for stability analysis.

Our main results can be stated as follows.

Theorem 1 Consider the system (2) with the con-
dition (3) and the data truncation (4), there exists an out-
put feedback control law of the form (5)—(6) with some
suitable parameters L;, aé, and k; which globally uni-
formly ultimately stabilizes the system (2).

Proof ~Select a} > 0 and kj > 0 (1 < i < m,
1 < 7 < ;) such that there exist two symmetric posi-
tive definite matrices P and () such that

AP+ PA < (3D
B'Q+QB < — I, (32)
where
A: diag{Al,AQ,"' 7Am}a
B = diag{Bl,BQ, e 7Bm}7
P= dag{P17P27"‘7Pm}7
Q dag{QlaQQv"' an}’
B _ali 1---0
Ai — : P : 9
—ay, ., 0 -1
| ol 00
0 1 0
B=|: + "
_ki _k; _k;g\
Let
A::nl = Amax(Pi) )‘ ( )7
>\an - )\maX(Qi)v )\ (Q )
@; = IMax {(CL;) } 61 2) C_L( m3) )

1<
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iR

= max {(k)*},

1<

= (3+2X))(a1)°LE + Ni(2X; + 4) Lia,

=8(8; + 1) Liia;(\.)* +

8LiN;a; (N 3)* + o, Ly,

i (2N +4) (ks + 1) L2,

32(8; + 1) Lidiki(X,,,)? +

8Lk ) + o L.

Pji,r is the element of P; at the jth line and rth column,

py=max{|P/ |}, 1 <i<m, 1<j< N\, I<r<A;.
Now, consider the following Lyapunov-Krasovskii

function

t\[)l] il]

[1] [1]
I

() = 3-Vitt)
SV + V0 + VO + Vi), 69
where
Vilt) = S Vi) = S (8 + DR ),
Vi) = Vi) = 3 207 0.
Va(t) = g “ijq 2dsdp,

Vi) = SV =3 [ [T 59 ()dsdp,

and supplement definitions of £¢(¢) and 2*(¢) are giv-
en as 51( ) = 0and 2(t) = 0, for t € [tg — @, to),
t=1,---,m.

’_hHN

Then the derivative o Vl( ) along the system (29) is

given by

d
Vi(t)]20) =

pr
g;@+4naaﬂaauw+
—§§uz+anuF

(0P )] <
el(t) +
2uii§;@+m@mﬁAx

(25 S+ 122D + 3kl + =40 +

83 (B DLia,ah - a},) x
(£1(0) = El(t = W) PP
(a3, a3 )1 0) = eh(t = (0) +

16 i i(@ + 1)Li)\il_fi(/\fn1)2 X

i=1j=1

((25(t) — 2t = %())* +

(25(t) = 25(t = mi(1)))*) +

8 30 (B + )Lilal, ab, - a3 )OiP;
Paby s )78, <

- i_";l Ly — 20l ) (B + 1) (1) el (1) +
16;2”:1 21(57 + DLk (N )2 x

((=5(t) = 25(t = %(1))* +
(£5(t) — 25 (t = mi(1)))*) +

%gam@ﬂwmwww

)
)

8 (8 + 1) Lidia( Xy )? %
=1

((€1(t) = er(t —%(1)* + (1)) (34)
The derivative of V5(t) along the system (30) is giv-
en by

d
EVz(tﬂ(sm =

()T Qi (1) + 2 (1) Qi (1)] <

-
Il

)%e1(t)” +

NgE
=
&&.
=

| ot =

T2 (t) + i Lidia; (N5
i=1

@
Il
-

Liditi(X,5)* (€1 (t) —€1 (t—7i(1)))* +(c1)*) +

oo
SI

o
Il
N

Lidiki(A,5) (25 (8) = 25(t = 7(t)))*.

.
Il
-

oo
NFE
s
>~

(35
By using the Leibniz integration formula and Lemma 1,
we have

le1(t) — €1t — %) =

T ) T y
o o BdsP < [ [
(36)

Choose L; such that L; > max{1,1;,16(8; +1)x
Nila b, 2(Bi+1)AE 1, 2A% 5} Tt follows from (34)—(36)
that

d d
—Vi(t —V5(t <
dtVl( )29y + dtVz( ) 30)
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1 ﬁjj Lot ()T () — ;f;l Lizi(t)"

_ T
(B + D) Lidiai (X)) @i L_

24(t) +
ei(s)Pds +

;
82 Lihas(N )2 jiw 1€ (5)[2ds +
8 Z Lidiai ((Bi + 1)(N)* + (Mnz)?)(e)? +

I. T i T s
83 Lidiki( M) Lw_z(s)z(s)dH

=1
U - X T . .
323 (Bi+1)LiNiki(NL,,) s L #'(s)T 2" (s)ds.
=1 —w;
(37
The derivatives of V3(t) and V,(¢) are given by

iMs &~
o~
=
[l

T,
€1(s)?ds <
w

m#ﬁ—éﬁ

@i (342X (1 + (a

s
S

VL)

wi(3 4 20 ) L2271 (1) 2 (¢) +

e'(t) +

S
Il
-

NFE!

&
Il
_

NgE!

@i (3 + 2X1)(al)2L3(ch)? +

s
Il
_

£l (s)*ds —

wi

2(3 4 2X1)(al)2L2 fT

7i(s)zds, (38)

IINGERINSE

H 8

and

d

SV =

i @5 (1)

T2i(s)ds <

0-5 )2

Ae(2Ni + 4) (F, + 1), L2z ()72 (L) —

[

ST () + 3 Mi(2As + 4) L2602 X

=1

T ) m .

—wi i=1

o

ﬁ
Il
—

i=1

Mz

@
I
—

=1
fz £(s)" 2 (s)ds. (39)

We also have

<.

Then from (37)-(39), we have
d
— Vit <
3V Wles.eo

-5 - @B+ 2+ @)L -

(20 + 4w Lia;) Lig' (1) T el () —
1

z<5 — wi(3+ 20 L

1
m , T
8 3 (Bi + 1) Lidiai(N;,,) i Li

<.

2'(t) +
Ei(s)%ds +

<.
—

) . T
w23+ 2X)(a)?L2 |

o

ﬁ
Il
-

£1(s)%ds +

£1(s)%ds +

E’%s

T
Li\a; (N 5)*w; f

t—wo;

Il
—

NERS

A(2); + 4)L2a, j (s)2ds+

1

<.
I

g(@H)L AR ()2, ﬁmzi(s)%i(s)dﬁ
8 f: (B, + D) + (M) (€))? -

)2ds + Zw,(S—i—Q)J)( 12 x

i=

INgE
;;

- cif \T i
i:21 wai 2'(s) 2 (s)ds +
> AN+ 4)a; Liwg(cr)? +
i=1
m _ ) T . .
8" Lidiki(Ni )%, L i(s)T4(s)ds +
1=1 —wi
SN2 +4) (ky + 1) L2 w2 ) 21(s)"T 2 (s)ds.
i=1 —wi
(40)
If the bounds T" satisfy
T L
mq + mo + 1
min{ !
8X\i(N\i +4) (ki + 1)L; +4(3 + 2X})L,’

1
8\i(\i +4)a;L; +4(3 42X\, (1 + (ai)?) L,

/=2 = = /=2 = =
fln>y +4._,1—._,2 = +4._,3—._,4

25, ’ 255 k@D
It follows from (40) that
SV @l € - S (@LVO + L), @)
where
a; = min{ ! ! s

(/81 + 1) m1 4)\3713
& = 8Xiai((B; + 1)(X1)* + (Na3) ") () +
@i(3 +2X1)(a1)* Li(e})* +
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i (20 + 4)a; Ly (ch)?.
Let Vi (c1) = {(e(t), 2(1)) : V() < zg‘jl fT} where
1 = (clyel, -+ ch)T. When (g(t),2(t)) € R*"x

R™/V;(c1), we have
d 1m ,
dit 2.3
Thus,
V(e(t), 2(t) < 3 e @02V (1) <
i=1
e 2N en BV (1), (44)

i=1
where L = min {L;}, @« = min {«;}. Let
1<i<m 1<i<m

=23 %a Ty = 3 eM T2V (1),
1=1 &g =1

T' =4(Inmy — Indm).

For any (zg, Z9) € R" X R"/V;(c1), whent > T', we
have V' (e(t), 2(t)) < 4my, or (e(t),2(t)) € Vi(2¢1).
Thus, it is easy to find that there exist a constant
01(m1) > 0 such that ||Z(t) —x(t)|| < 61 and ||Z(t)]|
< ;. On the other hand, if (zg,Z0) € Vi(c1),
||2(t) —x(t)|| < 01 and [|2(t)|| < 0, hold all the time.
Therefore, from Definition 1, the closed-loop system-
s (2)(5)—(6) is globally uniformly ultimately bounded.
The proof is completed.

Remark 4

a single output system. For the closed-loop systems (1) and

If m = 1, the multi-output system (1) is

(5)—(6), if 7, = 0, some similar results on output feedback
stabilization have been obtained without considering transmis-
sion delay in [19]. If 7, < T, T denotes the sampling period,
sample-data observer design and sample-data output feedback
stabilization have been studied for the SISO systems in [18,24]
and [20], respectively. In [21], the authors investigated sample-
data output feedback stabilization for the SISO systems. The
time delay may be larger than the sampling period. But, the
sampled and delayed outputs aren’t applied to update the sta-
bilizer immediately even if they are available. Whereas, in this
paper, although the transmission delays are unknown, the time
instants that the sampled data arrive are known. Once they are
available, they are used to design the stabilizer immediately.

4 Numerical simulations

In this section, we use an example to show the ef-
fectiveness of our proposed methods. Consider a multi-
output nonlinear system in the form of (2):

Z1(t) = @o(t) + Lz (t) cos t, To(t) = ui(t),

&3(t) = 24(t) + Uza(t) + 25(t)) sin ¢,

Ea(t) = ua(t), (1) = 21(t), Ga(t) = x5(t),
with z(0) = (0.55,—0.54,0.7,0.5). It is easy to ob-
serve that this nonlinear system consists of two blocks,

the first one (¢ ) consists of x; and x5, the second one
(72) consists of the rest. From (5)—(6), an output feed-

back stabilizer can be constructed by
5%1(75) = o(t) + ap Ly (ya (1) — @ (
o(t) = uy + ay L3 (y1 () — 21(t3)
uy = —[Liki131(t),) + Likyda(t))],

te [ty + T thys + Thgr)s k=0,

= 24(t) + ai La(ya(t7) — 23(3)),
= uy + a3 L3(y2(t7) — 23(13)),

up = —[L3ki23(t7) + Laki®a(t7)],

t et + Tl?ati-s-l + T/?+1)a k>0,

with 2(0) = (—0.1,0.3,—0.4,0.2) and the parame-

ters are given as (ay, a3, aj,a3) = (0.3,0.3,0.2,0.2),
(ki, k3, k3, k3) = (2,3,2,1) such that matrices A and

B are Hurwitz. Figs. 2-3 show the simulation results.

t}@))?
);

3 T T T T T T T

T T

—x,(t)
““““ 2y(t) 1

""" x5(1)

=)
§ T T T )
EAERAIFLY - T

]

7 8 9 10 7

o 1 2 3 4 5 6 7 8 9 10
t/s
Fig. 2 Trajectories of the states z;(¢) (1 < ¢ < 4) with
T' =T% =0.01s

e,(t)

5 6 7 8 9 10
t/s
Fig. 3 Trajectories of the errors e;(t) (1 < ¢ < 4) with
T' =72 =0.01s

In the simulation, we set the sampling period 7! =
T? = 0.01 s. 7} and d;, denote the unknown transmis-
sion delays and are simulated by random numbers in the
intervals [0, 1.57"] and [0, 1.77T"], respectively. 77 and
d3 are simulated by random numbers in the intervals
[0,1.677] and [0, 1.97"2], respectively. Then the upper
bounds 7; = 1.5T' > T', d; = L.7T" > T, 7, =
1.6T% > T?,dy = 1.97% > T?, whereas, it is required
that the maximum delay is strictly less than the the sam-
pling period, that is, 7 < T in [17-18,20,24,27]. The
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other parameters are selected as: [ = 0.1, L; = 2,
Ly =4, ¢} =107*and ¢ = 10~2. For simplicity, the
following algorithms are used to truncate the sampled
data, hy(z) = [10%2)/10* and ho(z) = [1032]/103,
where [x] denotes the integer part of x.

5 Conclusions

In this paper, we addressed the output feedback
stabilization for a class of multi-output nonlinear sys-
tems under static data truncation protocol. The sys-
tem outputs were sampled in a fully asynchronous way,
transmitted through communication network, and used
to construct the output feedback stabilizer immediately
when they were available. The nonlinear system could
be updated by the system inputs once they were avail-
able. There also existed two kinds of transmission de-
lays, i.e., transmission delays from the nonlinear sys-
tem to the output feedback stabilizer, and transmission
delays from the output feedback stabilizer to the non-
linear system. Therefore, the output feedback stabilizer
and the nonlinear system were updated at different time
instants. Based on interval decomposition, we put them
on the same interval and obtain the closed-loop system.
Sufficient condition was presented to guarantee that the
closed-loop system was globally uniformly ultimately
bounded. Numerical simulation was provided to illus-
trate the efficiency of the proposed methods.
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