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摘要:本文考虑具有随机观测时滞系统的后退时域估计问题.首先,针对随机时滞网络控制系统,运用观测重组技术,
将带有时滞的观测方程转化为无时滞观测方程,得到一组新的无时滞观测序列. 在此基础上,运用线性最小方差无偏估
计理论,推导出后退时域估计器的批形式公式和迭代形式公式,并给出稳定性分析.通过具体的仿真实例,对比现有卡
尔曼滤波器,验证了所提出的后退时域估计器具有更好的跟踪能力.
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Receding horizon estimation for networked control systems with
random transmission delays
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Abstract: This paper is concerned with the receding horizon estimation problem for discrete -time systems with random
delayed observations. Firstly, the random delay system is reconstructed as an equivalent delay-free one by measurement
reorganization technique. Secondly, a batch form and a recursive form for receding horizon estimation are proposed on the
basis of the new changed system and by minimizing a new cost function that includes two terminal weighting terms. Then
based on the derived condition, the stability of the proposed receding horizon estimation is proved. Finally, a numerical
example is given for illustration.
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1 Introduction
Recently, significant attention has been paid to net-

worked control systems (NCSs) as they bring numer-
ous benefits, such as reduced system wiring, lower
cost in maintenance, increased system agility, ease of
information sharing, etc. Along with the advantages,
several challenging problems, such as bandwidth al-
location, communication delays and packet dropouts,
also emerged giving rise to many important research
topics[1–4]. Transmission delay is now well known to
be one of the most often occurred phenomena in NCSs,
which may result in deterioration of system perfor-
mance and even instability. Therefore, it is of great sig-
nificance to study NCSs with transmission delays where
the packet dropout incorporates naturally.

There is no doubt that state estimation is an impor-

tant topic in both theoretical research and practical ap-
plications. In the past decade, a substantial body of lit-
erature has been devoted to state estimation for systems
with transmission delays. There existed several tech-
niques for dealing with time delay, such as the classical
state augmentation method[5], the linear matrix inequal-
ity algorithm[6], the polynomial approach[7], and the re-
organization innovation analysis method[8].

The transmission delay in NCSs may vary with time
and is often modeled as a random process. Two s-
tochastic processes: the Bernoulli process[9–13] and the
Markov process[14–15], are commonly used to describe
the characteristics of the random delays. In [10], the
recursive estimation for linear and nonlinear systems
with uncertain observations were considered. A binary
switching sequence-the Bernoulli distribution process,
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was used to describe the uncertainty in the observations.
An estimator was obtained by the covariance informa-
tion method. Similar result was also given in [11].
In [14], the state estimation with missing measurements
was considered, where the missing process was mod-
eled as a Markov chain. A jump linear estimator was
introduced to cope with the losses. Further in [12], an
optimal filter problem with random delay and packet
dropouts was studied, where the random received obser-
vations were stored in a possibly infinite-length buffer.
In [13], the optimal and suboptimal linear estimators
were designed for NCSs with random observation de-
lays, where the random delay was modeled as a set of
Bernoulli variables. The measurement reorganization
method was employed for treating delay terms. In ad-
dition, the Markov type transmission delay was consid-
ered in [15] and three different types of filters were de-
signed without state augmentation.

On the other hand, receding horizon estimation, al-
so called moving horizon estimation, has become as
an important research topic and gained much atten-
tion[16–19] in recent years. It explains the concept of
full information estimation and introduces the moving
horizon estimation as a computable approximation of
full information. The basic design method for ensuring
stability of moving horizon estimation was presented
in [16]. Further, the moving horizon estimation algo-
rithm was applied to the field of distributed estimation
in [17–18]. In this paper, we will combine the receding
horizon estimation algorithm and the observation reor-
ganization technique to derive the estimator of the sys-
tems with random time delays, which reduce the calcu-
lation complexity for the design process.

Based on the aforementioned literature, we inves-
tigate the receding horizon estimation for discrete-time
linear system with random observation delays. A set of
Bernoulli variables are introduced to describe the char-
acteristics of the random delay, and the measurement
reorganization technique is employed for dealing with
the delay terms. On the basis of the new system model
without time-delay, both batch form and iterative form
receding horizon estimation are derived afterward with-
out state augmentation, and the stability analysis is sup-
plied.

The contribution of this paper can be stated as: i)
Compared with the Kalman-type estimator developed
in [13], the receding horizon estimator developed in this
paper, since based on a finite number of system mea-
surements, can make more flexibility to tune weight-
ing parameters and provide a higher estimator preci-
sion. The comparison has been shown in Section 4;
ii) The Hadamard product is introduced in the deriva-
tion of the receding horizon estimator gains. This is
the main difference between the receding horizon es-
timation developed in this paper and the Kalman-type

estimator developed in [13]; iii) In the derivation of es-
timator gains, it is difficult to solve a global optimiza-
tion problem. Then the decomposition method is em-
ployed, by which the receding horizon estimation sub-
ject to unbiasedness constraint is divided into N indi-
vidual optimization problems. The independent opti-
mization problem is solved by the optimality principle,
and the individual estimation gains are obtained. This
is one of the technique contribution of this paper.

The remainder of this paper is organized as follows.
Problem description is given in Section 2. Section 3
mainly concerns with the design of the receding hori-
zon estimation and the stability analysis of the proposed
method. In Section 4, a simulation example is presented
to illustrate the estimator’s performance. Finally, con-
clusions are drawn in Section 5.

Notation: Throughout this paper, the superscripts
−1 and T represent the inverse and transpose of the ma-
trix. Rn represents the n-dimensional Euclidean space.
Moreover, E{·} means the mathematical expectation,
⊙ is the Hadamard product, col{·} indicates the col-
umn vector, tr{·} means the trace of a matrix and P{·}
represents the occurrence probability of an event.

2 Problem description
Consider the following discrete-time linear system

with random delay:

x(t+ 1) = Ax(t) + Cw(t), x(0) = x0; (1)

yr(t) =Hx(t− r(t))+ v(t− r(t)), (2)

where x(t) ∈ Rn is the state, w(t) ∈ Rp is the input
noise, yr(t) ∈ Rn is the measurement and v(t) ∈ Rn

is the measurement noise. Through the paper, it is as-
sumed that the constant matrices A, C, H are known,
[C,A] is observable, A is nonsingular, and r(t) means
the random delay.

Assumption 1 w(t) and v(t) are white noises
with covariance matrices E{w(t)wT(s)} = Qwδts,
E{v(t)vT(s)} = Rvδts, respectively. x0, w(t), and
v(t) are mutually independent.

Assumption 2 Measurements in (2) are time-
stamped. As is well known, time-stamping of mea-
surement information is necessary to reorder packets
at the receiver side because there exist random delays
in communication. The random delay r(t) is bound-
ed with 0 6 r(t) 6 r, where r is known as the
length of memory buffer. If the received measurement
is with a delay larger than r, it will be viewed as the lost
packet. The probability distribution of r(t) is P(r(t) =

i) = ρi, i = 0, · · · , r. Obviously, 0 6
r∑

i=0

ρi 6 1. We

assume that r(t) is independent of x0, w(t), and v(t).

Since formula (2) contains random delays which
can’t be treated directly by the reorganized observation
technique, the original system needs to be transformed
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into a constant delay one first. Based on the above as-
sumption, denote

y(t) =

{
col{y0(t), · · · , yt(t), 0, · · · , 0}, 0 6 t < r;

col{y0(t), · · · , yr(t)}, t > r,

where

yi(t) = αi,tHx(t− i) + αi,tv(t− i),

i = 0, 1, · · · , r (3)

with αi,t defined as a binary random variable indicating
the arrival of the observation packet for state x(t− i) at
time t, that is

αi,t=


1, If the observation for the state x(t− i)

is received with a delay i at time t;
0, otherwise.

(4)

Then αi,t(i = 0, 1, · · · , r) has the same stochastic
probability as that of r(t). That means P(αi,t = 1) =
ρi(i = 0, 1, · · · , r), where ρi(i = 0, 1, · · · , r) is
known. In the real-time control systems, the state x(t)
can only be observed at most one time, and thus the fol-
lowing assumption needs to be made.

Assumption 3 The stochastic variable αi,t(i =
0, 1, · · · , r) has the following property

αi,t+i × αj,t+j = 0, i ̸= j.

Then the optimal filtering problem considered in
this paper can be stated as follows:

Problem 1 (Optimal receding horizon estimation)
Given the observation {y(s)|06s6t}, find a linear mini-
mum mean square error receding horizon estimator x̂(t)
of the state x(t) with the finite horizon N , such that
Ew,v[x̂(t)] = Ew,v[x(t)].
3 Construction of the receding horizon esti-

mation
In this section, the random delayed system is trans-

formed into a delay-free one by the reorganization ob-
servation method used for dealing with the random de-
lay. Then, we will propose a new receding horizon esti-
mator with deterministic gains by minimizing the mean
square estimation error.
3.1 Observation reorganization

Because the state estimation for time-delay systems
cannot be deduced directly, it needs to be transformed
into a delay-free one by the reorganization observation
method.

For the given time t, the received observations can
be rearranged into a set of delay-free sequences as fol-
lows.

For 0 6 s 6 t− r, define

ȳr(s) ,

 y0(s)
...

yr(s+ r)

 =

 α0,sH
...

αr,s+rH

x(s) +

 α0,sv(s)
...

αr,s+rv(s)

 =

Hr(s)x(s) + vr(s). (5)

For t− r < s 6 t, define

ȳt−s(s) ,

 y0(s)
...

yt−s(t)

 =

 α0,sH
...

αt−s,tH

x(s) +

 α0,sv(s)
...

αt−s,tv(s)

 =

Ht−s(s)x(s) + vt−s(s). (6)

In addition, the covariance matrices of vr(s) and
vt−s(s) are described as follows:

Rr = diag{ρ0Rv, · · · , ρrRv},
Rt−s = diag{ρ0Rv, · · · , ρt−sRv}.

For convenience, denote

E[Hr(s)] =

ρ0H...
ρrH

 = Hr,

E[Ht−s(s)] =

 ρ0H
...

ρt−sH

 = Ht−s.

3.2 Receding horizon estimator
The problem considered here is how to acquire a

receding horizon estimate x̂(s|s − 1) of the state vec-
tor x(s) by using a finite number of measurements of
the system output ȳ(s) with weighted matrix. And two
forms of receding horizon estimation are derived from
the following two theorems.

In order to simplify the calculation, let us define in
Step 1 as

Yr(s− 1) ,

ȳr(s−N)
...

ȳr(s− 1)

 ,

H̄r,N(s− 1) ,

Hr(s−N)A−N

...
Hr(s− 1)A−1

 ,

Ãr,l ,

HA−l

...
HA−l

 , ρ̄r ,

ρ0I . . .
ρrI

 ,

ε̄r,N ,

εr,N . . .
εr,1

 , β̄r,N ,

βr,N

. . .
βr,1

 ,
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C̃r,l ,
[
H̃r,1 · · · H̃r,l

]
, H̃r,l ,

HA−lC
...

HA−lC

 ,

R̄r,N ,

Rr

. . .
Rr

 ,

εr,l , ρ̄r ⊙ (Ãr,lX(s)ÃT
r,l),

βr,l , ρ̄r ⊙ (C̃r,lQlC̃
T
r,l),

Ql ,

Qw

. . .
Qw


l×l

,

X(s) , E[x(s)xT(s)],

where ⊙ means Hadamard product and X(s) satisfies

X(s) = AX(s− 1)AT + CQwC
T.

It is noted that some definitions of the algorithm for
Step 2 are similar to those definitions above, which just
need to replace the subscript r with t − s, and thus is
omitted here.

For the given time t, we now develop a batch form
receding horizon estimator x̂(t) in the following algo-
rithm.

Algorithm 1 (Batch form receding horizon estima-
tor)

Step 1 For 0 6 s 6 t − r, a receding horizon
estimator x̂(s|s− 1) is calculated by

x̂(s|s− 1) = Fr(s)Yr(s− 1), (7)

where the optimal gain matrix Fr(s) is determined by

Fr(s) = (H̄T
r,Nφ

−1
r,NH̄r,N)

−1H̄T
r,Nφ

−1
r,N

with

φr,N = ε̄r,N + β̄r,N + R̄r,N ,

H̄r,N =

HrA
−N

...
HrA

−1

 .

Step 2 For t − r < s 6 t, a receding horizon
estimator x̂(s|s− 1) is calculated by

x̂(s|s− 1) , Ft−sYt−s(s− 1), (8)

where the optimal gain matrix Ft−s(s) is determined by

Ft−s(s) = (H̄T
t−s,Nφ

−1
t−s,NH̄t−s,N)

−1H̄T
t−s,Nφ

−1
t−s,N

with

φt−s,N = ε̄t−s,N + β̄t−s,N + R̄t−s,N ,

H̄t−s,N =

Ht−sA
−N

...
Ht−sA

−1

 .

Step 3 For s = t, set x̂(t) = x̂(t|t−1) in Step 2.
In the following theorem, we will show that the es-

timator developed in Step 1–3 is the optimal solution to
Problem 1.

Theorem 1 For systems (1) (4) and (5), when
(C,A) is observable, the linear minimum mean square
error receding horizon estimator x̂(t) with a batch form
on the horizon [t − N, t] can be derived by Algorithm
1, which satisfies the unbiased constraints.

Proof For 0 6 s 6 t − r, the finite number
of measurements on the horizon [s − N, s] can be ex-
pressed in terms of the state x(s),

Yr(s− 1) = H̄r,N(s− 1)x(s)−
C̄r,N(s− 1)W (s− 1) + V̄r(s− 1),

(9)

where

C̄r,N(s− 1) =Hr(s−N)A−1C · · · Hr(s−N)A−NC
. . .

...
Hr(s− 1)A−1C

 ,

W (s− 1) =

w(s−N)
...

w(s− 1)

 ,

V̄r(s− 1) =

vr(s−N)
...

vr(s− 1)

 .

x̂(s|s − 1) can be indicated as a linear function of the
finite measurements Yr(s−1) on the horizon [s−N, s]
as follows:

x̂(s|s− 1) = Fr(s)Yr(s− 1) =

Fr(s)(H̄r,N(s− 1)x(s)− C̄r,N(s− 1)×
W (s− 1) + V̄r(s− 1)). (10)

Taking expectation on both sides of (10), and to sat-
isfy the unbiased condition, Ex̂ = Ex, the following
relation is obtained

Fr(s)H̄r,N = I. (11)

Based on the definition of estimation error, denote

x̃(s|s− 1) =

x(s)− x̂(s|s− 1) =

[I − Fr(s)H̄r,N(s− 1)]x(s) + Fr(s)×
[C̄r,N(s− 1)W (s− 1)− V̄r(s− 1)]. (12)

So, we can obtain the covariance of estimation error
x̃(s|s− 1) as follows:

E{x̃(s|s− 1)x̃T(s|s− 1)} =

E{[I − Fr(s)H̄r,N(s− 1)]x(s)xT(s)[I − Fr(s)×
H̄r,N(s− 1)]T}+ Fr(s)E{[C̄r,N(s− 1)×
W (s− 1)− V̄r(s− 1)][C̄r,N(s− 1)W (s− 1)−
V̄r(s− 1)]T}FT

r (s) =
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T1 + T2. (13)

By the foregoing definitions, the following results
can be drawn:

T1 = Fr(s)ε̄r,NF
T
r (s)−X(s), (14)

T2 = Fr(s)β̄r,NF
T
r (s) + Fr(s)R̄r,NF

T
r (s) =

Fr(s)[β̄r,N + R̄r,N ]F
T
r (s). (15)

From (13)–(14) and (15), we obtain

E{x̃(s|s− 1)x̃T(s|s− 1)} =

Fr(s)[ε̄r,N + β̄r,N + R̄r,N ]F
T
r (s)−X(s) =

Fr(s)φr,NF
T
r (s)−X(s). (16)

The objective is to obtain the optimal gain matrix
F (s), subject to the unbiasedness constraint (11), in
such a way that the error x̃(s|s − 1) of the estimate
x̂(s|s− 1) has minimum variance as follows:

Fr(s) = arg min
Fr(s)

E[x̃(s|s− 1)x̃T(s|s− 1)] =

arg min
Fr(s)

E[tr(x̃T(s|s− 1)x̃(s|s− 1))] =

arg min
Fr(s)

tr[Fr(s)φr,NF
T
r (s)−X(s)].

(17)

Before obtaining the solution to (17), we obtain the re-
sult on constraint optimization in the first instance. In
order to simplify the calculation, using Fr for a tempo-
rary replacement Fr(s). Now, suppose that the follow-
ing trace optimization problem is given

min
F

{tr[Frφr,NF
T
r −X(s)]}, (18)

subject to

FrH̄r,N = I. (19)

For convenience, partition the matrix Fr in (11) as

FT
r =

[
f̄1 · · · f̄j · · · f̄N

]
, 1 6 j 6 N.

From (19), as a consequence, the s-th unbiasedness con-
straint can be written as

H̄T
r,N f̄j = ej. (20)

In terms of the partitioned vector f̄j , the cost func-
tion (18) is represented as

N∑
j=1

f̄ T
j φr,N f̄j −X(s).

Thus, the optimization problem (18) is reduced to N
independent optimization problems

min
f̄j

f̄ T
j φr,N f̄j −X(s)/N, (21)

subject to

H̄T
r,N f̄j = ej. (22)

Obtaining the solutions to each optimization prob-
lem (21) and putting them together, we can finally ob-
tain the solution to (17).

By solving the optimization problem (21), we can

firstly establish the cost function

Φ = f̄ T
j φr,N f̄j −X(s)/N + λT

j (H̄
T
r,N f̄j − ej),

where λj is the s-th vector of a Lagrange multiplier,
which is associated with the s-th unbiased constraint.

In order to minimize Φ, two necessary conditions
are obtained

∂Φ

∂fj
= 0,

∂Φ

∂λj

= 0,

which give

f̄j = −1

2
φ−1

r,NH̄r,Nλj. (23)

So

H̄T
r,N f̄j = −1

2
H̄T

r,Nφ
−1
r,NH̄r,Nλj = ej

and

λj = −2(H̄T
r,Nφ

−1
r,NH̄r,N)

−1ej. (24)

Form (23) and (24), we have

f̄j = φ−1
r,NH̄r,N(H̄

T
r,Nφ

−1
r,NH̄r,N)

−1ej

and

f̄ T
j = eTj (H̄

T
r,Nφ

−1
r,NH̄r,N)

−1H̄T
r,Nφ

−1
r,N .

Putting them together, we can obtain

Fr = (H̄T
r,Nφ

−1
r,NH̄r,N)

−1H̄T
r,Nφ

−1
r,N . (25)

Bring (25) into (10), we can reach the batch form of
receding horizon estimation

x̂(s|s− 1) = (H̄T
r,Nφ

−1
r,NH̄r,N)

−1H̄T
r,Nφ

−1
r,NYr(s− 1).

(26)

The derivation of Step 2 is similar to that of Step 1. This
completes the proof of Theorem 1. QED.

Remark 1 In the derivation of Theorem 1, the lin-
ear minimum mean square error receding horizon estimation
subject to unbiasedness constraint is divided into N individu-
al optimization problems. Then, by introducing the Lagrange
multiplier, the independent optimization problem is solved, and
the individual estimation gains are obtained. At last, the total
gain is obtained by putting all the components together. The
amount of computation meets our requirements. In addition, in
(17), Fr(s) should be updated over time.

In what follows, we will rewrite the batch form esti-
mator in an iterative form for computational advantage.
For the given time t, an iterative form receding horizon
estimator x̂(t) is developed.

Algorithm 2 (Iterative form receding horizon esti-
mator)

Step 1 For 0 6 s 6 t − r, an iterative form esti-
mator x̂(s|s− 1) with finite horizon N is given by

x̂(s|s− 1) = Ω−1
r,N x̌(s), (27)

where
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x̌(s−N + l) = x̌(s−N + l − 1)+ (A−l)THT
r ×

(εr,l + βr,l +Rr)
−1ȳr(s− l),

and Ωr,N can be obtained from

Ωr,l = Ωr,l−1 + (A−l)THT
r ×

(εr,l + βr,l +Rr)
−1HrA

−l

with 0 6 l 6 N , x̌(s−N − 1) = 0 and Ωr,0 = 0.
Step 2 For t − r < s 6 t, an iterative form esti-

mator x̂(s|s− 1) with finite horizon N is given by

x̂(s|s− 1) = Ω−1
t−s,N x̌(s),

where

x̌(s−N+l) = x̌(s−N+l−1)+(A−l)THT
t−s×

(εt−s,l+βt−s,l+Rt−s)
−1ȳt−s(s−l),

and Ωt−s,N can be obtained from

Ωt−s,l = Ωt−s,l−1 + (A−l)THT
t−s×

(εt−s,l + βt−s,l +Rt−s)
−1Ht−sA

−l

with 0 6 l 6 N , x̌(s−N − 1) = 0 and Ωt−s,0 = 0.
Step 3 For s = t, set x̂(t) = x̂(t|t−1) in Step 2.
It will be shown in Theorem 2 that the iterative esti-

mator developed in Algorithm 2 is the optimal solution
to Problem 1 subject to unbiased constraints.

Theorem 2 Assume that (C,A) is observable.
Then the linear minimum mean square error receding
horizon estimator x̂(t) with an iterative form on the
horizon [t−N, t] is given by Algorithm 2, which satis-
fies the unbiased constraints.

Proof Firstly, for 0 6 s 6 t− r, define

Ωr,l = H̄T
r,lφ

−1
r,l H̄r,l.

So it can be represented in the following Riccati E-
quation for 0 6 l 6 N :

Ωr,l =

H̄T
r,lφ

−1
r,l H̄r,l =

[(A−l)THT
r H̄T

r,l−1]×[
(εr,l + βr,l +Rr)

−1 0
0 φ−1

r,l−1

]
×[

HrA
−l

H̄r,l−1

]
=

H̄T
r,l−1φ

−1
r,l−1H̄r,l−1 + (A−l)THT

r ×
(εr,l + βr,l +Rr)

−1HrA
−l =

Ωr,l−1 + (A−l)THT
r (εr,l + βr,l +Rr)

−1×
HrA

−l. (28)

Similarly, it is available for 0 6 l 6 N that

x̌(s−N + l) =

H̄T
r,lφ

−1
r,l Yr,l(s− 1) =

[(A−l)THT
r H̄T

r,l−1]×

[
(εr,l + βr,l +Rr)

−1 0
0 φ−1

r,l−1

]
×[

ȳr(s− l)
Yr,l−1(s− 1)

]
=

H̄T
r,l−1φ

−1
r,l−1Yr,l−1(s− 1) + (A−l)THT

r ×
(εr,l + βr,l +Rr)

−1ȳr(s− l) =

x̌(s−N + l − 1)+ (A−l)THT
r (εr,l+βr,l+Rr)

−1×
ȳr(s− l). (29)

From (28) and (29), an iterative form for receding
horizon estimation is obtained

x̂(s|s− 1) = Ω−1
r,N x̌(s).

Similarly, We are able to get an iterative form of re-
ceding horizon estimation in Step 2. This completes the
proof of Theorem 2. QED.

3.3 Stability analysis
The stability of the receding-horizon estimator will

be investigated below. Thus we just need to analyze
the stability of the filter developed in Theorem 2. It
needs to require consideration of the filter’s transfer ma-
trix. From Theorem 2, we define the transfer matrix for
0 6 s 6 t− r as

ΓN =

I −Ω−1
r,N−1(A

−N)THT
r [HrA

−N×
Ω−1

r,N−1(A
−N)THT

r + (εr,N + βr,N +Rr)]
−1×

HrA
−N . (30)

Under the given assumption, the necessary and suf-
ficient condition subject to asymptotical stability of the
proposed filter is that the transfer matrix ΓN of the es-
timator is one stability matrix. It means that all of its
eigenvalues are located in the unit circle. The stability
of the observer is ensured by the following theorem.

Theorem 3 If (C,A) is observable, and A non-
singular, then the matrix ΓN has all its eigenvalues
strictly within the unit circle for all finite N > n − 1

where n is the dimension of the state vector.

Proof For 0 6 s 6 t− r, define[20]

x̂(s) = ΓN x̂(s− 1) + Φ(s),

where

x̂(s) = Ω−1
r,N x̌(s), x̂(s− 1) = Ω−1

r,N−1x̌(s− 1).

In view of (28) and (29), we can obtain (30) immediate-
ly. This completes the proof of Theorem 3. QED.

Remark 2 Conditions for the stability of the pro-
posed moving horizon estimation is proposed for time-invariant
systems. The advantage of this estimation algorithm is that it is
easy to implement since the gains can be performed off-line.
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4 Simulation example
In this section, a simulation example is given to il-

lustrate the efficiency of the proposed receding horizon
estimation for random delay system (1) and (2). In this
part, we define the time horizon 0 6 t 6 100, the esti-
mator horizon size N = 5, and the random delay hori-
zon 0 6 r(t) 6 2. The other parameters of the system
are as follows

x(t)=

[
x1(t)

x2(t)

]
, A=

[
1.45 1

−1.2 −0.22

]
, C=

[
0.3

0.45

]
,

H =

[
1.8 0.5

0 1.8

]
, ρi =

1

3
, i = 0, 1, 2.

Based on the design procedures of Theorem 2 in
this paper and Kalman filter in [13], the simulation re-
sults are obtained as follows. Fig.1 shows the trace of

the real value x1(t) and its estimate. Fig.2 shows the
trace of the real value x2(t) and its estimate. Fig.3
shows the root of the mean square estimation errors
(RMSEEs) of x1(t) according to the two algorithms,
while Fig.4 shows the RMSEEs of x2(t) according to
the two algorithms. Fig.5 shows the summation of the
RMSEEs of x1(t) of the two algorithms. Fig.6 shows
the summation of the RMSEEs of x2(t) of the two al-
gorithms. It can be seen from Figs.3–6 that the obtained
receding horizon estimation for systems with observa-
tion delays track better than Kalman filter and the es-
timation scheme produces better performance. On the
other hand, it can be seen from Fig.7 and Fig.8 that the
tracking performance for the case of N = 5 is better
than that of N = 2. It is a suitable choice for the esti-
mator horizon size N = 5.

Fig. 1 State trajectories of x1(t) Fig. 2 State trajectories of x2(t)

Fig. 3 The RMSEEs of x1(t) Fig. 4 The RMSEEs of x2(t)
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Fig. 5 Summation of RMSEE trajectories of x1(t) Fig. 6 Summation of RMSEE trajectories of x2(t)

Fig. 7 Summation of RMSEE trajectories of x1(t) for RHE
estimation: N = 5, 2

Fig. 8 Summation of RMSEE trajectories of x2(t) for RHE
estimation: N = 5, 2

5 Conclusion
In this paper, the receding horizon estimators

were proposed for discrete-time linear system with
random observation delay. The random delay system
was transformed into a delay-free one by the reorga-
nization observation method. On the basis of the new
observation equation, a batch form and an iterative
form for receding horizon estimation were designed.
The observation reorganization technique is firstly ap-
plied to the receding horizon estimation for discrete-
time systems with random delays. It is obvious that
this method simplifies the computation compared to
state augmentation method for dealing with random
delays. This is the main technique novelty of this pa-
per. The stability analysis was supplied and the the-
oretical results were illustrated by a numerical exam-
ple.
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