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A Multivariable Adapitive Controller with Integral -
Action in the Presence of Plant-Model Order Mismatch
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Abstract: A robust adaptive controller is presented for a multivariable plant described by a con-
trolled auto-regressive integrated moving average (CARIMA) model in the presence of bounded distur-
bances and plant-model] order mismatches. The bounded-input bounded-output stability is proven. Fi-
nally, a simulation example illustrates the main feature of the controller.
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Introduction

Robust adaptive controllers dealing with plant-model order mismatches and bounded distur-

pances are proposed recentlyl!™®J, there, however, exists a steady state error in these adaptive
fcontrol systems. In this paper a robust adaptive controller is presented for a multivariable plant
fdescrlbed by a CARIMA model and an integral action is provided automatically in this way,
ftherefore steady state errors due to unmodeled dynamics and step disturbances can Dbe
;ehmmated

2 A MIMO adaptive controller

“ Consider a MIMO plant described by the followmg CARIMA model

,/, A Dy = B(q“)u(é) + EW/ 4, ; (2. 1)
where y()E R, u(®) ER™ and § (t) € R" are the plant output, input and unmeasured bounded
desturbance vectors respectively. =1—gq7 . A(g™") =diag (A4 (¢"H) and B(H=

(g7%By(g~ 1)) where 4;(¢™!) and B,,(q 1y (1<, 1< j<Cm) are polynomials in the back-
¥f[',Ward shift operator ¢~ 'with unknown constant coefficients. A4;(0)=1 and B;;{0)50. dy; isa

time deldy between the i th input and the j th outputs. In the following we denote z;(¢) as the ith

element of a vector z ().

Using the following equations

= A(gOF (gD + ¢4+ JG(gT)) =L,
;*Where Fi(¢~") and Gi(¢~1) are polynomials in ¢~ with orders d,— | and n;— | respectively,
s the order of A;(¢"1), d;= min {d;;}, (2. 1) can be written as
<j<m

(4 4= 7D + a(g™) ) + D) BylaTD ) ol 4 &)
=1

— D GO0+ U ), i = Ly, 2.2
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where  a(¢™D) = Gi(g™D,  By(g™) = Fi(¢ DB (¢ D¢,  6,(1) = g™
and o = [“f)» oo 9“3-,.-1 Y ERILN BE s+ »}5;;34—4'.—1 [ ,mﬁdfl] ’
KO = [dyi (D) s o, g — m5 4 1), du (D)7, oo sedult — by — dy + 1)77,
where b;= max {the order of polynomial ¢~%B;;(¢~1)}.
1<j<m
The model order used in the design of a controller is , in general, chosen such that it is e

than the actual plant order for simplifying the design of a controller and implementing the algg' o

rithm easily, -even in non-adaptive cases. Suppose we choose pi<<n; and 4 <bi+ 4 for tnod
orders,then (2. 2) can be rewritten as -
v+ 4 = 5() + @O0 + pie + 4D, ’ (2.3

where z (D7 = Edys(t) s Ayl — gt 1) ()T e u( — g+ D],
67 = [a;], :C‘;i—l,ﬁ?ﬁl,"‘ ”ggn’... ,I[g;}__l ™ ,ﬁ;:gl],
W+ d) = 207 + 6+ 4,
where
20T = [yt — p)oee, dys(t — w D du(l — g7, e u(l— b — 4+ 7],
A=, Yy iy iR Birar e Bl .

In order to guarantee the boundedness of z(¢)7 y» the normalization technique is used here. De
g #

fine
W = 5 — &) = G — i — ) /10y,
5t — &) = 2t — &) /u(0)
#4(4) = max{2 max [t — D ,0),
1<y, ,
where PO = [4i(O s oo, 5t — 1), u ()T, oo yult — )77,

with #,<{r; and bi+d:<{s;. The dimension of @) I8 gi=7,+ms,. It is evident that ¢; (1) con-

tains all of the inputs and the outputs included in X;(¢). @i(l—d),  denotes the kth element of gzz,

(U~d). Cisa positive constant and is used to prevent division by zero.
Using these normalized variables, (2. .3) can be rewritten as o
5O = 5t — &) + 70— )7, + 50, (2. 1)
where )7,-(6)=E,v(£——d;)7'p,»+(5,v(t)/,tq(t). It is clear that 9;(¢) is bounded. Suppose M; to be a}i’ o
upper bound of |p(1) ], i.e. [ [ <M G= 1, = 1),
The recursive parameter estimation is as follows. For = | PRLLIS TR
a0 = 50 — 5l — &) — 50— WTHU— 1), (2.5)
AP — 2)5,(0 — d)e(w)
P+ 2 — d)7P (0 — Dz (L — &)’
=D = p - MO DR i arr

6 =8t — 1) +

(2.6)

2. 7’}”’ o

o otherwise,

where 7<lo<3(1—1)/4 » 0<7<3/7.
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The‘cmtrol u(t) is chosen such that
WU+ &) = 5 + wDGW, i= 1, m, 2.9
ere {y0()} (G==1,-=+,m) are known reference sequences,
. Stability results
The following assumptions are necessary for the stability analysis.
Al: &;(3=1,+-,m) are known.
A2, The upper bounds of n; and b;(i==1,++,m) are known.
A3. The upper bounds of |y;(¢) | (i=1,++,m) are known.
Ad4; The sequence { || ®(¢) || } is unbounded only if there is a subsequence {4} such that

lim || @) || = oo, 3. D
lye | > 2K, | o) | — Kzy 6> 0, (3.2)

Where 0<<K,< oo, 0K, ,<co and
ST = [t — )7, pu (L — DT ]
Note the assumption A2 does not require knowledge of the plant orders, but only upper
bounds of their orders. The assumption A2 is used here to decide the dimension of ¢;(¢) in the
normalization variable 4 (#). ‘

“Theorem 3.1 Under the assumptions Al-Ad if & in (3. 2) satisfies

K, > 2~/ mM, where M = max{M;}, (3.3)

i 1<G<m
_the adaptive control system formed by the plant (2. 1), the parameter estimation (2.5)— (2. 8)

and the control law (2. 9) have following properties:
M D {lu || and { || (& || } are bounded for all t.
2) There exists a T>0 such that for (>>7.
0 — 0| < 2MuD), = 1,

Proof ; From lemma 2 in [37] and 3. 3) we have

K, > 2./ mM > m max {|5:() — ¥/ )}

\1\7'1

>/ m max {|g:(0) — y? (O l/ max{Z mka\<x @it — ddi|,C} )

1<i<lm

>./m max{!y.(t) — %O/ max{2 | ® || ,C

, \"\m
Following the same lines as in [ 3] the results are obtained immediately.

The theoretical results presented here, particularly condition (3. 3) in the theorem 3. 1

h’show that the inherent nature of the plant may limit the allowable model reduction. A discussion
i of the effect of the rhodel reduction on the performance of the control system can be found in
feh A
-4 Simulation
Consider the following MIMO plant
' 1 —0.9¢7" + 0. 027 0 7 [ (0]
L o 1= 0747 — 0.03¢2 lg0)]
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MU 00407 0.2) e — D] [ /] T
Ch—0oset 1 ] e — o) T gl Tl 4.1y
where £;(¢) and £,(¢) are random noises with zero mean and [&(D]<0. 1. = :

75) and n,=0. 3 (85<Ci<{135) are step load disturbances. Although (4. 1)'is

0.3 (4 . :
a SeCQnd ord

=1, There
therefore, are 6 parameters to be estimated, i. e. 67="[ab, A", p¥] and 5= ai, i 8] Th
S Th

controller parameters are chosen as o=0.7, My=0.12,M»=0.14 and C=2, Figs,

plant (n;=2,d;=1,b;=1), a first order model is used in our algorithm (pi=1

(@) ang

). Fj .
s,
(¢) and (d) show the corresponding control u (¢) and up (). It can be seen that the ¢

(b) show the behaviour of 71(8) and y,(¢) tracking reference sequences y¥({) and ¥3(¢

ontrolje,

drives y;(4) and y,(¢) to track 92(8) and y3(2) quite well, even though there are step distul-bancfes

and plant-model order mismatches. Figs. (e) and (f) show the parameter estimates of él(l) aria
6,(¢), which demonstrate the good convergence properties of the parameter estimates,
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