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Abstract; This paper bresents a sufficient condition of robust stabilization of bilincar systemg i

which both structural perturbations and the states with time- delay are contained. According 1o the &0

knowledges of the matrix measure, the problem of asymptotically robust stability of the systems with
higher dimensions is transformed into that with onc dimension. Thus the main result.is casily deduceg
by using comparision principle. Finally the numerical example is given to illustrate the robust ¢on-
troller design procedures.
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1 Introduction

It is well known that any control design based on the mathematical model exhibiting‘t‘h

bustness with respect to the mod'elling uncertainti‘es or imprecisions is desirable. The studies o |
bust stabilization of the controlled systems subjected to a class of structuraI pe’rturbatioﬁ;stlh@
been developing in depth by many researchers in recent years. As the important apprpaychk of dea
ing with sdme classes of uncertain systems, many ;echnicjues with the éid of time domain desxgr}s
are announced from the different applied aspects in the literatures. The robust stabilization of t
systems with time-delay is also actively discussed in the related areas because these researches a
very significant for ‘the practical engineering applications(=3], i{) this paper the robust stabiliza-
tion of the multivariable bilinear systems With time-delay using a possible linear state feéedba

controller, avoiding the nonlinear design[4J, js proposed. It should be noted that the proéf Ofti
main theorém is based on the structural methods of the ’differential equaﬁiohs' and the basxc theor
of the matrix measurel?-6], Then we can proceed to change the stabilization probléni of,t’hé sy
tems with hi’gher dimensions into that with one and the simplifing is obtained. . To prove thescv i
called comparision pronciplel>"lthe discretization technique and the inductive method are used.

This paper is organized as follows; in section 2, the useful result of the matrix measure I8

briefly introduced and the main throrem is expounded. The proof of the theorem is arrange
section 3. Finally, in section 4

» the numerical example is placed to illustrate the de's'iénf 5
2 Basic concepts and main result '
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Let us consider the following bilinear system with both structural perturbations and time-de-

lay:

X =4+ ADXW + D (P + APIXU — k)
&=

{
+ E(Ns + AND X — h)u, () + (B + 4BUW),
1

X =), —hr<t<0, 2.
where  h=max{k,}, 4, P,, N, € EB** B& B the state X& R*and the controls us € R for ev-

1oy : ,
ery fixed ¢, U= (uj,uz, = ,%)7. A represents the corresponding matrix perturbation. A, is time

delay in the systém and @(¢) is a given continuous vector function over the domain under consid-
eration. According to the basic concepts about the matrix measure we can obtain '

Lemmal®] Let 4 and B be the square matrices and 4, (A) represent the matrix measures,
then we have |

1) flexp (A l<<exp{m ()¢}, 2.2)

2) m(A+B)< (A ~+wu(B). (2.3)

Remark For the sake of simplicity of the computations k is generally taken 1,2, or oo in

the practical calculations in the sequel.
Now we analyze the stabilization of the system (2. 1) via the state feedback control. If the

possible control law is taken as

U= KX + EK,X(L — B, 2. 4)
where k; is given by i |
TR e

: koo [HOH e MY KD 0.5,
o oap - owl ke

t==1,2,,{ Substituting (2. 4) into (2. 1) yields

) !
X =(A+ BE)X + 3P, + BK) + (P, + SBK)IX(L — ko)

==

& !
+ 2 W ANDXU — B IKOX 4 DIKPX U — 4] + (SA + ABK) X,
s=1 ji=1

X =0y, —hrt<0. » (2.6)
The stabilization of the system (2. 1) can be stated as follows

Definition The bilinear system (2. 1) is robustly stabilizable against the structural pertur-
bations by means of the state feedback control (2. 4), if every solution X (¢) of the closed loop
system (2. 6) starting from an arbitrary initial curve converges asymptotically 1o X(¢) =0 as ¢

- OO,

The sufficient condition of the robust stabilization of the bilinear system shown above is ad-
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dressed as the main result in the paper.
Theorem  Let the pair (4,B) € M, where M= {(A,B) | there exists a & such that ,, 4
BK)<C0}. If we can choose the appropriate K; in the control (2. 4), i=1,2,-

o5l Such that
1) m(A+BK)<<—||44+ABK s,
)

2.7y
<\ B i
2) >__1,(HP8+BAsHk+itAPs+ABKsHk><—m<A+BKo)~HAA+ABKolh. 2.8y
then the closed loop system (2. 8) is robust stable agaihst the structural perturbations, 4.

Remark The feedback gain matrix K, is generally assumed to be real. If this requirment i
“properly relaxed, that is, allowed: to be complex which means that the gain possess both amplj.
tudes and phases, the design of controller may be more convenient.

3 The proof of the theorem
For ¢2>0, the differential equation (2. 6) can be equivalently expressed the integral equa-

tion and hence we have

X (Ol Sexp{m(4 + BEN} 0] + ﬁexpmu + BE)} (. — 0 { > C|IP, + B |,
s=1
+ 4P+ BRI X (e = 2N+ DTN, + VLI X G — e T EL X (2
&7 ]

+ ZH KPNX G = )10 + [1Caa + BE) W1 X (0 [ Y7, @. 1k>,,~;ﬁ

according to the lemma (1). The next step of our proceeding is to investigate the following dif-

ferentlal equation in one dxmenswn

{
(0= w4+ BEDa () + Z‘EHK + BE 4 [l4P, + 4BK D2 — ) 4+ DTN,
§==1 . s=1

+ Nllz = BONTEL 2 (D + DKLz — 1)) + |44 + ABKo|lz (@),
=1 .

z()=w{), —r<<i<0, v (3.2)
where [|@ () ||<<¥(¢). It is obvious that the solution of above equation has the similar form to the
right hand side of the inequality (3. 1) when (>>0. Thus the so-called comparision principle has '
to be proved, that is, :

X <z, ¢>0, . (3 3
in order to change the problem with higher dimensions into that with one. To do so ,discreting the
inequality (3. 1) for any time period 7 we have

IXCG + DT <exp{m(4 + BEQTH X T ||

G+1)7
+ LT exp{m(4 + BKo) ) ((k + DT — 1)

l .
XA DU, + BE + ||4P, + SBK X (v — ho
s==1

B A
A DIV A AN X G a)
g=1
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¢ .
SOUELIX |+ DKL X — a1+ [1(44 + 4BEQ) | X (] dw, (3.4
. =
nere the constant k is the number of sample times. we also have

2L + DTY =exp{m(4 + BK)T}a()T) + ﬁ:ﬂwexp{m(/l 4+ BK)((k+ DT — )
l
()P, + B + 4P, + dBEJJa(r — b
&=1 .
1
+ EHN,, 4 ANz (v — ko R

X (& |a(w) + Z]]K‘”Hx(f — k)] 4+ |[(44 + 4BKo) [l () yd#(3. 5)

’Because X @) and z(¢) are contmuous for (>0, if (>0 is given such that || X (4) <<z (i)
hen 3 a & neighborhood 6(: T (4)) such that | X (O ||<<z(t) for all L& 8(tg). It is assumed that
| the time period T satisfies:

P < min{T(0) ks, yhi}- (3.6)
Let k=0, we have |
x| < 2(T, (3.7
;according to (3. 6) and the fact that IX (O ||= 0 |<¥(0)==(0). It is assumed that for
any positive integer k we have

| XD | < 2T | (3.8)
:::'{Where ¥T>>h is supposed without loss of generality. Since T is arbitrarily given, thelinequality
(5 8) implies

IXON < 2, for all < KT (3.9
To prove the fact that [|XC(k+1)T3 || <<zC(k+1)TJ the following technique of reduction to ab-
surdity is mtroduced If we assume that the function .
| ¥ = X — 2, (3.10)
has at least qne zero point in the interval (kT , (k-+ 1)TJ, and the first is denoted by &, say, that
is ‘

y(& = | X — 2(5) =0, (3.1

which implies

, Xl < =0, , (3.12)
. as ¢t&€ (¥T,&). On the other hand,

X< exp{ﬂk(A + BEKOE @O + J expl{ (A + BK)} (& — 7)

X {Etnn + B + 4P, 4+ 4BEJJIX (v — k)|l + };}nzvs + ANJLIX (= A

X UELNIX@] + Zuwnllxu—~ il + 14 + dBEQ WX (D | }dz. (3.13)

It is quite evident that 5~h6<k{l’, s=1,2,%,l, so according to the inductive hypothesis (3. 8)
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and (3.12).(3. 13) we have

IX(O < expim (A + BE)EW(0) + ﬁexpmu + BE)} (& — )

s 3 {
X A2 UP, + BE N + 4P, + 4BKJa(r — 1) + V|,
s=1 $=1]

1 :
T Vel (e = UK () + D TEP|a(r — 23 + [ a4 + ABE o) || ( )}d
j=1

=Z<§) s o (3‘ 14

which acts contrary to (3. 11). This contradictory fact shows that
[XC + DT < 20k + DT (3. 15
In terms of the inductive principle, we have the conclusion cited in (3. 3).

Let us consider the Liapunov functional of the form

v’(w)———w<0>+ >J 4 (6)d6,

—hy

where d, is a constant to be determined. Hence the derivative of 1" along the solution of the sy&

tem (3.2) is obtained

Viz) =V, + 1, 3.1
where @ = u(A+ BKo) + |44 + ABK|,, b, = 1P, + BK . + ||aP, + 4BK i (3.1
and '

{ { { '
M=ot 250070 + D ba@at — 1) — Ddath — 1), (3.1
=] &==]

87

Vo= DIV + ANILIK® 2 — )220 + S0 S,
=1

s=1 j=1 ,
+ ANV EP 2 — h)a(t — b)), (3.2

The quadratic form V' can be expressed the following compact form

Vi=— 20", z= (2();2(l — )yt — kb)Y, and

!
*tz—}_jds — b /2 e — b)2

&=1 :’,
Q= — b2 4 0 (3.21
— b/2 0 d
If the conditions (2. 7)-(2. 8) hold it is easily verified that .
| }_,af + Lbzmd <—ua, (3.22)

as long as d, is taken to be b,/2. This fact implies that ¥, is negative definite. On the other haf?d' "
we can find the fact (1) if z(¢)—0 and not all 2(l—h)—=0, i=1,2,,{, we have V1/“Z“Z%[’,}' .
05 (2) if ||z]|—0,as t—>co, we also have Vi/llz2>0. Therefore if ¥ ¢>>0, J ¢>> 0 such that

Vi<lellz||? for any € £(0,68), a d-neighborhood of zero point,where 540 and hence ||z]| 7 0-
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is noted that-V; is positive definite and so we can assume, without loss of generality , that there

exists a constant E>>0, such that

Iﬁm — Vi(z) =e>0, (3. 23
z| =5
ence — Vi(2) =— |||V (Bz/||z|) /B = el|z||?/ B2 (3.24)
Taking e=e/ (2E?) given in above we conclude ;
— V=V (2) — V> ellz]|t/ (2E%). (3.25)

1t follows form the work of Hale and the definition stated above that the system under considera-
- tion is robustly stabilizable with respect to the structural perturbations via the linear feedback con-
ol. The theorem is thus completely proved.

Remark It can be seen from the processes of the proof that Ny, i=1,2,++,{, have no ef-
fect upon the robustness of the system. If (4,B) is a controllable pair, the matrix K, of deter-
mination is guaranteed. Moreover, the experienced method may be used for reference.

Step 1: The K;, i=1,2,,l, are at first designed such that the induced matrix norm ||[P+
- BK,|l, is as small as poss;'ble. Taking Forbenius norm this implies

minJ (K;) = min tr{(P + BK)"(P + BK)}. (3.26)
' Thus the quantity on the left hand side of (2. 8) is determined.

; Step 2. According to (2) in the lemma, designing a appropriate Ko such that  m(A)+ -
1(BK ) is so small that (1) and (2) in the theorem are satisified is generally feasible. '

: 4 Numerical example ‘

Consider a process governed by thé 'bilinéar time-delay controlled’syst‘em’with structural per-

- turbations.

(— 6.5, —6) (1.9,2.1) (0.9,1)  (—0.5,0.5)7
X ={ | }xm [ ].wﬂa)
0.5.1.2) (—5, —4.5) (—0.5,00  (0.8,1)
[(wz‘.2,- ) a,1. D ‘G - { (— 1, 1) (0.5,1)J ‘ "
: . XN(L— . : P ) p — T1)U
Le=1,—0.5 -(~0.5,0.5)J " (—2,— 1) 0,0.5) " o

i [(0,1) . (-—1,1)}“& Yar (D) + [l 0} Ez, i - 41
0.5,1) (—0.5,00 I J’ ‘ :

 In this example the euclid norm and the corresponding matrix measure are used. The related nom-

inal system matrices are given by

=% 2y (10 -2
A=10 e DT lles ) Pe=y o)
[ 01 [ 0.2sinl 0. Sexp(— )

5 = ‘ 4. 2
b —1) 0. 5exp(— ¢ 0. lcost ) ‘

The perturbations are denoted by dA= (a;;), 4P;= (P§?) and 4Py= (P{’) where all elements
aj, P§’,P{Pare able to be directly obtained.
First we find the feedback gain such that J (&)—>min. It is not hard to verify by using the

optimization technique that
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=10
b=l s

- and in this case J(K;)=0. Due to the same reason as above we have

o= .
REA (R | (4.4y
and J(&,)=0. The simple computations lead to '
4Py + 4BK ||, < 1. 7918, ||4P, + AI}KZHZ < 2. 3705, " 5)
It is clear that we can obtain u;(A4) = —3. 9189. Thus Kq is figured out gt
' ' ' [—5 0
T -5 8 4.8)
by using the eigenvalue placement and hence uy(BK,) = —5. So we have .
#(A + BKo) <— 8.9189. ' 4.7y
Because the fact that e
44 + 4BKo[, << 4.5338, o .8y
we have g i ’
#2(A+ BEo) <<— 8. 9189 <T— 41,5338 <C— |44 + ABk,|, 4.9y
and T

ZJHJP -+ ABK, nz 4. 1823 < 4.3851 <<— uy(4 + BK) — |14 + ngonz

s=1

, (4 'IO
In accordance with the theorem the system can therefore be robustl y stablluable v1a the hnear,',
state feedback control . ] .
U= KX + KXW = 1) + K,X0— 5), 41D
where K;, i==0,1,2 is determined by (4. 3), (4.4) and (4. 6). ' g
5 Conclusions ,
The robust stabilization for a class of MIMO bilinear systems‘with structural perturbations""‘ .
and time-delay is discussed and the linear state feedback is available. As shown in the paper, thé
derivation of the proposed sufficient condition is succinet since the comparision principle is used.
The design of the controller is also relatively concise provided that the norm is chosen appropriate-
ly. The result presented in this paper generalizes some recent criteria of robust stability of the lin-
ear system. It is noted that the similar method can be applied to a kind of nonlinear time-delay
systems. ‘
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