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THE MIXED PENALTY FUNCTION METHODS
-FOR SOLVING THE CONSTRAINED_V
OPTIMAL CONTROL PROBLEMS

Chen Zuhao

( Shaundong University, Jinan )

Abstract

The articles [7, 8) have taken a unified approach to define the
concepts of exterior and interior functions, and have taken the
generalized exterior and interior penalty functions to solve the con-
strained optimal control problems. In this paper, our work is founded
on [7,831. We combine the exterior and interior penalty functions to
produce a mixed method for solving the constrained optimal control
problems in the following form,

dx
.d—i-=g(;‘, xy + B, x)u,

4 x(du) =Xy X(bu> =Xy

b
Jlul = au{go(t; x) + (hn(ts X} 7‘>}dt=miﬂ9

\

where{(+, « » denotes inner product, g(¢, %), Z2o(t, x) and hy(z, x)
are n-vectors, 1-vector and r-vectors functions, respectively; B(, x)
is an aXr matrix function; all of the above functions are continuous
for (1, x)€la, DJXR" and continuously differentiable for x€R", u is
a vector and its range is in U; U is a2 convex compact set in R"
with nonempty interior; B’ and B” are clased sets in R® with non-

empty interior.
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Identification of Multivariable Continuous—
Time Systems F rom Samples of
- Input-Output- Data-- -~

N. K, Sinha , Zhou Qijie

( McMaster University - (South China Institute of
Hamilton,Canada ) Téchnolog}’, Guangzhou )
- Abstract

Several methods for the identification of linear multivariable
continuous ~time systems from the samples of input—-output data
are discussed, These include three new methods proposed by the
authors. The suitability of these methods for estimating the para-
meters of the system using a recursive least - squares algorithm is
compared using a simulated example, The results indicate that the
best results are obtained using the block pulse function method

as proposed by the authors,

1. Introduction /

In most practical situations, one must identify the process pa-
rameters, using a digital computer, from the samples of the input and
output observations. On the other hand, the dynamical model of the
process is usually described in terms of continuous-time state equa-
tions. The problem may, therefore, be stated as the estimation of
the parameters of a continuous-time model from the samples of the
input-output data for a multivariable system.

In this paper we consider five different methods for the identi-
fication of linear multivariable continuous —time systems {from the
input -~ output data.

(i) the state tramsition method
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‘( ii ) the bilinear z—-transformation method

(iii)  the modified state transition method

(iv) the trapeioidal integration method
and ( v ) the block pulse function method.
The first three methods are based on the indirect approach, i. e. a
discrete —~time model is first identified, and then an equivalent con-
tinuous-time model is obtained. .Among these, only the first two are
well- known. The last two are direct methods, and have not been
studied earlier in connection with the identification of multivariable
continuous-time systems from the samples of input and output data.

Finally, a comparison of the five methods is made for a simu-
lated two—input two —output system. Since a recursive least - squares
algorithm has been utilized for parameter estimation in each case,
only a very small amount of noise was added to the output. For
‘higher noise level, we must use more sophisticated methods, like
maximum likelihood or generalized least-squares for better estimates.
2, Stat_ement of the Problem ‘

Consider an nth-order linear time-—invariant system with m
inputs and p outputs. The outputs of the system are assumed to be
contaminated with additive noise. The system can be described by

the following equations.

:c (t) = Ax(2) + Bu(i) 1 ,
y (1) =Cx(t) / 1)
2 =y) +w) 5

where x(t) ¢ R", u(t) ¢ R™ and y(1) ¢ R®. The noise vector w() is
assumed to be a zero—- mean random noise vector of dimension .

The problem of system identification may be stated as the deter-
mination of the matrices A, B and C from records of samples of u(AT)
and z(kT), where k is an integer, and T is the sampling interval. For
convenience, these sampled observations will be denoted as u(k) and
z(k), respectively. It will be assumed that the sampling interval, T,
has been selected carefully, and in particular, |4,T|< 0,5, where 4,
is the eigenvalue of A farthest from the origin of the complex f{re-
quency plane {11]. It will also be assumed that the order, n, of the
model is known a priori.

. .As is well known, the mairices 4, B and C are not unique aund



112 CONTROL THEORY AND APPLICATIONS Vol|

for any given input—output description, many such matrices can be
obtained through a similar transformation of the state. Advantage
of this fact can be taken to define the matrices in a canonical form.
Several canonical forms have been proposed for the identification of
multivariable systems (1, 2, 12—141. Alternatively, one may utilize
the transfer. function matrix description of equation (1), which is
unique- ' .
V(sy =G(s) Ulsy +W(s) 2)
where '
g11(8) g;z(S) s gy m(s)
G(sy= | Eni() £ fam( (3)

2p1(s)  8&pa(s) = Zom(s)

is the transfer function matrix of the system. 1f necessary, it is
always possible to obtain the state equations from the transfer func-
tion matrix. Another advantage of using the transfer functionma-
trix is that one can decompose the multivariable system into p sub-
systems, each with one output and m inputs, corresponding to each
cow of G(s). Hence, each output may be calculated in the following
form
m .
Yi(s) = 2 8ii(s) u(s) +w;(s) (4)
i=1 '
i=1, 2,505 D
It may be pointed out that,in general, we may have to estimate
more parameters when we use equation (4) than when we use a
canonical form of the state equations.
3, The State Transition Method v _
This is the most well—knowa method. 1f we assume that the
input is held constant during each sampling interval, and allowed to
vary only at the sampling instaats, we get the following state tran-
sition equation

x(k+1)=Fxk) +Gulk)
v ° (5)
y &)y =Cx(k) +wlk)

where for notational comvenience, x(kT) has been represented by
x(k) and . ' .
F=ef (6)
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T S
G=[ et Bds (7)
The problem of estimating the parameters of the discrete—time
model descrided by equations (5) has been discussed by several au-
thors (1—53, who have proposed using canonical forms of these ma-
trices to minimize the number of unknown parameters. The next
problem, then, is to determine 4 and B from the estimates ofrF and
G-
An efficient approach, which does not require the computation
of the eigenvalues and eigenvectors of F has been proposed earlier

r6) and will be described briefly. We first make an initial guess of
AT as ‘
ATy =%(F-F“‘) | | (8)

Further improvements are then made by nsing the algorithm
(AT)&IHLI»=(AT>U)+F—1(F_F(H) . (9)
where '
(AT)¢® is the guess for AT at the kth iteration, and
((AT)“A)EA__F_((AT)“")3’

Fn :C(A,T)(“sl_‘_-AT(n P i SR

Foe (10
. . (10)

Tt should be emphasized that the convergence of this algorithm
is guaranteed only if the initial guess (AT)‘°’, as given by equation
(8), is sufficiently close to the actual value of AT. This will be
possible in a1l cases where A repesents a stable system, and the
spectral norm of AT is less than 0,5

After determining 4 from F, it is now quite straightforward te
obtain B through the relationship

B=R"'G } (11)

where

R=IT+ : ATZ+—1—_A_ZT*+M (12)
21 31

and can be easily calculated on & computer if A is known Further-
more, the nonsingularity of R is guaranteed if the condition on the
spectral norm of AT is satisfied.

4, The bilinear 7 — Transformation
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Instead of using state-space techniques, one may like to use the
transfer function matrix representation of the multivariable system,
and decompose it into p subsystems with -one output and m- inputs,
as in equation (4). A procedure for identifying the parameters for
this representation has been discussed in anm earlier paper [15).
From the transfer function matrix of the discrete - time system ob- -
tained in this manner, we can obtajn the transfer function matrix of
the corresponding continuous -~ time system by using the bilinear z-—

transformation, given by
2
e ,
= - | | (13)

or
- 57 , ,
z“‘=~§f:‘;§;f',:§ (14)

Thus, one only has to replace 27 lin the transfer function matrix
of the discrete~time system by the rxght—-hand side of equation
(14) to obtain the corresponding continuous— time transfer function
‘matrix. This is a very -good apprommatlon as iong as  the sampling
interval has been selected suitably, so that |4, 7| <0,5, where A, is
the pole of the continuous~time transfer function matrix farthest
from the origin of the s— plane [5). This corresponds exactly to the
spectral norm condition discussed in the previous section.
5, The Modified State Transition Method

The method described in sectidn 3 is based on the assumptaon
that the input «(1) is held constant durmg each sa,mplmg interval.
Uualess a sampler and zero-— order hold are. 1nc1uded with the - con-
tinuous — time- system, this assumption is seldom vahd with the pos-
sible exception of the case in Wthh u(t) is pnecemwwe constant
Furthermore, our objective is to estimate the mode]. of a continuous-
time system, with the knowledge of only the samples of the input
and the output. In the absence of any further information abotit the
variation of u(#) between the samphng 1nstants, it appears that a
more reasonable approach is to utilize the mean value of u(k) and

u(k+1) .to obtain x(k+1). Hence, equation (5) is modified as follows

KA D =F e+ 6+ 2 {a +ui D} )
2 S i é . €15
4k =C x(k) +w(k) |
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M;;‘E'aé_s:e F and G are as defined earlier in equations (§) and 7).

The procedure for identifying the discrele —time model is the

spme as before except for the {act that instead of using #(k), we now
wse i{u(‘k}%—u(;&-& 1)}. With this minor modification, the earlier al-
l';
da

gorithms can be utilized (1-—3) to estimate F and G, in a canonical
form. The matrices 4 and B can be determined from F and G ip the
sagme manner, as described in section 3.
&, The Trapezoidal Integration Method

As pointed out by Hung et al. (10J, one may use the trapezoidal
rule of integration to directly estimate the parameters of the contin-
uous~time model from the samples of the input-output data. The
method proposed by them required the measurement of the states to
obtain the model, and was applicable only to single—input single-
output systems. We shall preseat a method which will remove these
limitations. :

If we integrate the state equation over the interval IT<<:<<(k+
i)T, and use the trape'zoid’a,l rule, we get the following approxima-

fion.
CEelhr

CE+1H7T
’x(k+1>~=-x(lc)=L Axdﬁj Buds
T

L

AT

e

(ol +1)+xE)I+ %“Eu(ﬂ D+ulkd) (18)

Eguation (15) can be rearranged in the form

#(k+1) =F x(k) +5%Eu(k+ D +ul)] (17>
¥y =C k) +wik)
where
L= AT =2 AT
and
—_— AT N-v ,
G::;(I—~«—2~—~> BI (19)

The matrices 7 and G can be estimated if we know the order, n,
of the model. Let us consider that the matrizx 4 can be diagonalized

by the linear transformation to obtain
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A=diag. Chyy dy,eoves Ay (20)
Then, from equations (18) and (19).
F=diag Cfis faorresfnd

where
1+ % AT
fié.""“""‘—‘l (21)
1-= 4T
2

The transfer function of each subsystem is first estimated from
y;{k) and 0,5 {u{k) +u(k—1)} by expressing the relationships in the
form of a difference equation. A partion fraction expansion then
leads to f; and the other related terms. The details of the derivation
are given in an ealier paper (18).

The case when A cannot be diagonalized is also easily handled
by using the corresponding Jordan form. In this case, the partial
fraction expansion leads to some repeated eigenvalues, from which
the corresponding A, B and C are obtained ina straightfoward man-
ner.

7. The Block Pulse Function Method

The block pulse functions were first used in the a‘nalysis and
synthesis of dynamic systems by Sannuti (8), who utilized them for
integrating state equations. Since this approach requires matrix in-
version, it is not comvenient for on~line identification. We shall
present an algoriythm which does not require matrix inversion.

Although both block pulse and Walsh functions constitute com-
plete sets of orthogonal piecewise ~ constant functions for approxima-
tion, the former have several advantages (7, 8.

Following Shieh et al. (9] and Palanisamy {17), we shall define
an N —~element block pulse function over the interval 0<<i<T,, where
T,=NT. as -

1 for (j-1) T=<i<jT

(YA v
OF { 0 otherwise - (22 ,)
and let
fé(t) =00, (2) Gty e Py(t))’ (23)

Given any function y(¢) which is integrable over the interval 0

i1y, we can approximate it as

Y =9y (24)
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where

y=0y; ¥yl (25)

with the superscript’ representing transposition and

yi=average value of y(1) over the interval (- DT=s<iT (26)

It is easily shown that N
[ ¢mar=THO® | (27>
where '
4+ 1 11
¢ %+ 1--1
H=10 0 41 (28)
0 0 0 %

It may be noted that H is an NXN upper triangular matrix. It

also follows that we may approximate the integral

¢ £ .
nw=[ywaz] ¢ @ya=Te'm y (29)
We may also express I,{z) in the block pulse form
Ia(t)::_{x,?_(t):EIp]g Inz,'": IUN]?L(t) (30)
where
I,,,=4Ty, ‘
I,,=Ty,++%Ty,
. (31)
I,,=Ty, +Ty, + 5Ty,
If yo=0, then we get the following recursive relationship
T .
Ilyi=11wf—1+—?(yi+yi.—n> {or 1=1, 25 : (32)
Similarly,
£ ort
Lw=[ [ ywaazt so (33)
where
E,=[12yu Iz,z’“”alz,rx}j (34)
Again, if I,,,=0, we get the recursive relationship
T .
Ig=Ip.4 + ’“fz'”“ Uyt ) fori=1,2, (359

Substituting for I,,; from epuation ( 32) we get
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T
Iz,i':Iz,z'-x+T-In,in1+_4“"(?/_i+yi=.1) (36
Proceeding in this manner, we can show that the kf* integral
L(OZL/ o) (37)
and
T T
Ly=Dy v TL i+ —— Ly + — Liigyicy + oo
2 4
Tft'l . Tk
+“éT-‘£‘”[nx'~z + oF (ityio) (38)

We shall now show how these relatidnships can be utilized for
identifying the parameters of a continuous~time multivariable sys-
tem from the samples of the input —output data. First we decompose
it into p subsystems, each with one output and m inputs. Then, the

“output at the kth sampling instant can be expressed in terms of the.
unknown parameters as well as the past samples of the output, the
inputs, and terms of the form I;;. For example, consider a second —
order system with two inputs and two outputs. The differential e-

N

quation for one of the outputs can then be written as

dZy dy du d'V
"Et—i""’"alh;g}“%"a“y:é’ -Et——-!-bnu-i-cx—gg—'i"(fo?i (39)

where u(s) and v() are the two inputs.
Integrating the above twice with respect to time, and expressing
in terms of block pulse functions? we get, for zero initial conditions
YWt L gy rac Ly ¢ =b.1," (1) +by T, $1)
ok S ek, P (40)

where
Lw=[ywaz1 sw C41)
Iz(z)zﬁ J{iy(‘[) drd’f_'_"__{z’ [ 262 (42)
11w =[lu s, g (43)

(gt o
J2<t>:=j[o Lu(i’) drdr=7," ¢ (44)
K;(ﬂ’;iiﬂf)d‘fﬁ&’é_@) . (45)

and
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- tort ‘
o= [vwara=-x g0 (48)

Equating the kth coefficieat of ¢(i) we have
= —aylig=aglyy+b, Jip+bo Top+c ky, v ky,, 47>

The values of the terms I;,,, /;,; and K;,, are obtained from the
samples of the output and input according to equations (32) and
(36). Hence, the unknown parameters of the subsystem can be esti-
mated by using the recursive least—-.squa,res (or the maximum like-
lihood) algorithm from the concatenation of equations obtained for
different values of k. It should be noted that while calculating I,

J;p and K;,,, we have

_ YU +y((i- DT
i 2

u(iT) +u((i~1)T)
= 5 \ (18)

and
v +v(G~1T)
2

8, Results of Simulation

To compare the methods, a two-input two—output second — or-
der system with the following transfer function matrix was simu-
lated '

1 2
52 +35492 s+1
G(s) = . : (49)
3 28+ 1

5+2 $*+35+2

The output of the system was calculated for the following input
#;(t)=1,5¢0s0,9871¢t+2,5¢c050,2137t~4 cos 5,8763¢ (50)
u,(t) =2c0s0,4769t+2cos 3,83t —4 005 2,3171¢ (51)
Assuming zero initial conditions, the exact output is given by
¥, (1) =1,63123 € 21 —~5_,295588 ¢™¥ + 0,478639 cos(0, 9871t~ 1,237807)
+1,215481 cos (0,2137t—0,316979) —0,108106 cos (5,8736¢ |
~2,64498) +3,601447 cos
| (0,4769¢ - 0,444997) +1,01051 cos (3,83t~ 1,315401)
—-3,170091 cos (2,317t —1,163355) (52)
§2(2)=1,1286¢7"~5,8133 ¢72¥+2,01764 cos (0,9871 ¢
|~ 0,458474) +3,728775 cos (0,2137.¢~ 0,106445)
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—1,9332 cos (5,8763¢t—1,242744) +1,21333 cos
(0,4769¢+0,08268) +0,903337 cos (3,83t
-0,963971) —2,454973 cos (2,317 ¢—0,663793) (53)
A small amount of noise was added to the outputs, and the samples
of the data were utilized for estimating the models with noise to
signal ratio of 0,15%. For parameter estimation, the system was

decomposed into two subsystems, each of the form

bys+b, .5+ ¢, ]

(54)
s*+a,s+a, s*+a,;s+a,

G (s)= [

The recursive least —squares method (at sampling intervals of
0,05 second and 0,1 second), was used to estimate the model para-
meters from 200 samples of input-—output data with and without
noise. -

For the smaller sampling interval, T=0,05 second, all the meth-
ods except the block pulse function method gave poor estimates in
the presence of noise. The reason is that with smaller sampling
interval, the differencing used in these methods causes the noise to
be accentuated. On the other hand, the block pulse function method
does not appear to be affected as it uses integration which smooths
out the effect of the noise.

8, Conclusions

The results of simulation indicate that the state transition meth-
od gives very poor estimates of the parmeters when the input is
got held constant between the sampling instants. If the bilinear z -
transformation is used with the transfer function obtained as above,
the results are not much better. It was also found that in this case
the bilinear z—~transformation gave an extra term (b, and ¢,) in
each of the numerators.

The modified state transition method gave much better esti-
mates, as expected. The corresponding models obtained with bilinear
z—transformation were also good, and nearly identical with those
obtained with the trapezoidal rule.

The best results were obtained with the block pulse function
method. It is probably due to the fact that the implied integration
used in this method has the effect of smoothing out the noise. This

was noticed even further when the sampling interval was reduced,
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1o the presence of noise all the other methods gave poor estimates,
since all the transformations require division by T, as well’as some
differencing. It is felt by the authors that this methodi s very prom-
;sing and merits further investigation, especially regarding bias
and consistency in the presence of noise while using recursive least
—~squares methods.

Another interesting feature is the choice of the sampling inter-
val. It was found that for most systems, there is an optimum choice
of the range from which the sampling interval should be selected.
Larger as well as smaller sampling intervals give poorer estimates
of the parameters, especially for the first four methods. This will be

discussed in more detail in a subsequent paper.
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