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A Note on The Estimation of Cardiac Output
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(China University of Science and Technology, Hefei;
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Abstract

A nonlinear least squares fit technique with a moving window
is used to estimate a time varying coefficient of as et of differen=
tial equations describing the cardiac output for a one body com-
partment lung model, ‘ v

Computer simulations demonstrated the feasiblityof this methe
od,

1,

Knowledge of cardiac output is important in patieﬁt monitoring,
physiological experiments and heart function testings. Standard clin-
ical methods used” today -of measurement of cardiac output are
thermal dilution and dye solution, both of which are invasive meth-
ods.

Many noninvasive methods for measuring cardiac output have
been developed since the work of Fick in 1870. One of them was
proposed recently by 0. Brovko and co- workers using an extended
Kalman filter to estimate the pulmonary blood flow which is nearly
equal-to the cardiac output. ‘

In our work we have tried to approach the same problem by
using the method of nonlinear least squares fit with a moving win-

dow, and achieved satisfactory results in computer simulations.
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Following Zwart it can be shown by a minor transformation of
variables that the cardiac ovutput for a one body compartment lung
model can be described mathematically to a proportional constant
by the” time—varying coefficient b(t) of the following system of
differential equations:

@

Xy —a N—b(t) X3 a x,(O)"‘Z’g(O):OOO
= : + P (1>
;2 —a —ch(t)| | x, a t=>0,0

The measurable output is:
2 =x, ) +7r®) t=0,0 ‘ (2)
In Eq. (1), ‘
P(t) is the inhaled gas partial pressures; ‘
x,(t) is the end tidal gas partial pressures;
%, () =x,(t) - p(¢), where p(¢) is the unmeasurable partial

pressures in the body compartment;
a={(1-x)v, where x is the fraction of physiological dead
space in the lung; v is the ventilation, volume per unit time.

In our experiment x=0,4, v=7.0 Lt/min, so that a=4,2.

¢=1+C,/C,, where C,; is the equivalent gas volume of the gas

exchanging part of the lung; C, is the equivalent gas volume
of the body compartment. In our experiment C,=2,7 Lt,
C,=57.6 Lt, so that c=1,047,

In Eq. (2), the measurement noise 7(t) is assumed to be the
identically independently distributed random variable with
zero mean and standard deviation o. when 0=0,0 we refer
to this case as the noiseless case, otherwise, the noisy case.

Our problem is to obtain an estimate of b(t) at discrete time

instant t given observations of z(¢) from time zero up to time t.

In approaching this time—varying problem we use a coustant

coefficient model:

°

Y, -a —b t'é/x a ¥, (0) =y,(0)=0,0
[P ' (3)

Y ai t=0,0

®

Yy, I l—a ~cb

where 4, ¢, P(¢) are the same as in Eq- (1). Instead of making use

of observations of z(¢) from time zerg to time f, this model is fitted
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py observations of z(t) only within a moving window on the time axis

by minimizing the following penalty function with respect to b:

(L+MDHT '
fhy= > (2@ =y I (4)
t=(L+1T

This moving window is shown in Fig. 1, where T is the sam-
pling period, MT is the window width and (L+1)T is the starting
_point of the window. In our case T=0,02 min, M=10 and L=0, 1,
«s As all observations of z(t) within the window are used in Egq.
(4), the minimum point of f(b) in Eq.(4) should reasonably be
referred to as the estimate of b(z) at the middle point of the window
and will be denoted as b(L+M/2).

ohservations
of e
Z{t) used
> Pt
(L) (Lad/2)T (L+)T

Fig. 1 Moving window with width MT.
2.
" When P@) in Eq.(3) is a coanstant U, y,(t) can be obtained

analytically as:

y;(t)-—"U-—sl—r_{s-;-t(sl—a)e"’zf-(sg~a)e“‘2’3 (5)
where —s; and —s, are eigenvalues of Eq. (3):

-5, =050~ (a+ch) +./(a-ch)*+4ab ] (6

~5,=0,5(~(a+ch)—af(a—ch)*+4ab) C7)

both of them are real and negative when a>0 and 56>0. Thus the

penalty function to be minimized is:

(L+M)T -
f(by = E { z(t) ~U+ WE(SL_G)E—%’”(SZma)e_31‘:| )g :
t=(L+1T
(8)
When P(t) is a square wave train with constant amplitude and
varying polarities through a given period of time as shown Fig. 2,
the analytical solution y,(t) of Eq. (3) is:
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<o
Y (1) =Coe™Sit 4+ C e Sat + Z [sz_lsin(zi—-1)wet+C§z~-Lcos(zi——l)wgt]
1=1
(9)
where
we=27x )Ty I (10)
D=(ab(c—-1)— (21— 1)%w,2]% + (a+cb)? (20~ 1) w,* (11)
1§ 40 i ) , 4. 8Ua
. =) g - W rabic—~ - - -
Coia 7 {(zi—l)xab(c Dlab{c~ 1= (2= 1) we*] T,
© (a+cb) (2= Dw, | (12)
A 11 8Ua . ) 4U -
Coiot =5 ﬁtab(c‘— D-(2i=1)*wy* )~ — abc~1)(a+chyw, g (13)
i::l, 2’ sos @
P(t) 1-exp(0,5Txs;)
" Cy= (s, - : 14
U e 35 $p— 8, S 4) 14exp(0,5Tysy) (14)
# U k 1—exp(0,5Tys,)
t Co=m —— (s8,-6a 1
° ik ar, ¢ Sy =8, ! )1+exp(0.5Tst) (15)
-0 here —~s, and —s, are eigenvalues of

W . Lo
Fig. 2 P(D) Eq- (3), and are given by Eq. () and
Eg. (7) respectively.

The penalty function to be minimized is

(L+M)T
for= > 5{ 2(t) = Coe™1t = Ch e st
t=(L+1)T ‘
5 . 2
_ [C”_isinizi—1)w0t+C2i_1cos(2i~1)wot];— (16
i=1 :

where only the first five sine terms and the first five cosine terms
in Eq. (9) are retained in order to facilitate practical computations.
3.

Compu’ter simulations have been performed on the IBM 370

Model 3033, controlled by the Michigan Terminai System, at Rensse-
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laer Polytechnic Inmstitute.
In simulating Eq. (1) Py is first assumed to be a constant

. U=1,5 and then is assumed to be a square wave train with ampli-

tute U=1,5 and a period Ty=0,2 min.- For each case of P(t), b(2)
;s assumed respectively to be the following three functions,
a. b{g) is a constant,
b(k) =23,00;
b. B() is an exponentially decaying functiom:
B(k+1) =0,0020(k), b(0Y=23.00;
c. b(1) is a linearly decaying function:
bk+1) =b(ky ~ 0,033, b(0) =23,00
The time between step k and step (k+1) is the sampling period T
which is 0,02 min in our experiments as mentioned previously-
Data of x,(k) is obtaioned by solving numerically Eq. (1) using
a dth order RUNGE—~KUTTA Subroutine. An IMSLLIB Subroutinev
is called to generate the sormal noise r(k). Each v(k), multiplied
by o, is added to %, (k) to produce the noisy putput z(k).
In fitting these data into Eq.(8), 2 NAG Subroutine is cailed
for obtaining the minimum points of f(b) in Eq.(8). and Bq. (16)
respectively. The results are shown in Fig. 3 to Fig. 14. Im each
figure both b(k) and their estimate 5(1@) are plotted together in
order for comparision. These results demonstrate the feasibility of
applying the method of nonlinear least squares fit to the estimation
of a time— varying coefficient (at present the cardiac output) in a
set of differential equations obtained in modelling the cardiac
output.
Practical experiments in estimating cardiac output are still going
on in Rensselaer Polytechnic Imstitute.
The author gratefully acknowledges the help of Prof. R. Roy
and Prof- H. Kaufman of Rensselaer Polytechnic Imstitute. Special
thanks go to Prof. H. Kaniman for his very valuable discussious

and constant guidance during the author’s stay at RPIL
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