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Abstract

I. Introduction

On the stability analysis of the large-scale Systems, there are two
methods based op Lyapunov functions which are called “scalar
Lyapunov function method” and “vector Lyapunov function method”
respectively. The advantage of the former jg that the regions of
stability can be estimated very fast. Thus this method is g powerful
tool for solving many technical ang engineering pProblems. [n this
respect, Lig Yong - qing, Wang Mu - qiy, Wang Liantt-s1 4 N,
Michel, R. K. Miller, D.D. Siljakte1t7y 4 others studied many
cases, such as time—varying, time-invariant, delay and non - linear,
continuous and discrete systems. Vector Lyapunov function method and
comparison Principle, ip general, can give one g result that possess-
¢s weeker conditions (i-e.a larger region of stability) than the sca
lar one. [n 1966, F.N.Bailey[“’established the comparison Principle
of linear system. During the Past years, A.N. Michel, R.K. Miller,
D.D.Siljak studied the stability of continuous large - scale systems.
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But until 1982, the comparison principle and vector Lyapunov funec-
tion method of discrete—time systems has not been established. Af-
ter the works cited in the References, it is possible, as described in
this paper, to obtain a series of results of comparison principle of
discrete systems by applying the ideas of A.N.Michel, R.K. Miller
and Siljak.

T, Scalar Case

We begin by considering a scalar difference equation of the form

yim+1) = fly(m), m), m=1+1, v+2, -, - (2.1)
where y(m) ER, mEI&(r,00), f(m):RpoxI->R (Rp={x|xER, 0<[x—x,|
<o}, Assume that Eq.(2,1) possesses solution y(m) =y(my y.,v) for
every ¥.=y(7;y,,7), which is unique. Also, we assume that y(m) =0
is an isolated equilibrium. For the sake of brevity, we frequently
write y(m) in place of y(m; y,, 1) to denote solutions with y(1) =y,
Definition 1, A function f Cx(m), m) belongs to the class H, if
for any fixed m€I and all x’ (m), x”(m) ER such that x’ (m)y<<x”(m)
the inequality fCx’(m), m)<< f(x"(m), m) is satisfied.
Theorem 1, If x(m)ER such that x2(7)<y(r) =y, and if

x(m+1)<flx(m), m)] yméEI
where fi RpxI->R, f(m) EH, then inequality x(m)<y(m) holds for all
m&l, where y(m) is the solution of Eq. (2,1).
Proof. The proof is very simple using iteration method. When m=r1,
we have x(7)<y(r). Because of f(m)EH,, then
(T + D =flx(7), 1I<fly(r), t)=y(r+1)
Thus we get x(m)<y(m) for all m=v+1, 742, ... The proof is com-
plete.
Theorem 2, If x(m) E€R such that x(r)=y(r). Assume that y(m) is
the unique solution of Eq.(2,1) and if x(m+1) = fCx(m, Ym) ymEI
where f(m) CH,, then x(m)=>y(m) for all mEI.
Proof We omit the proof here.
Now we study the stability of the system as follows,
x(m+1) =glx(m), m) (2.2)

where g(+, mJ:R'xI->R", ym€I, x(m) ER" Assume that the solutions
of Eq,(2,2) satisfy the unique existence condition.
Definition 2, A function VCx(m), m) such that V(0, m)=0 is Posi-
tive Definite if there exists a positive definite function DCx(m)) in



m&l, where function SLx(m)I=0 if and only if x(m) = (.
Theorem 3, If Vix(m), mY:R" IR, is a positive definite Lyapunov
function such that

Vix(m+1), M1 ceuns =Vigr(my, m), ML oy IOV (m), m)
where flV(m), MmICH,. Then the following statements are tpye.

solution of Eq.(2,2) is also stable.
(ii ) If the trivial solution of Eq, (2,1) ig uniformly asymptotical-
ly stable, then the trivial solution of the Eq.(2,2) is also uniformly
asymptotically stable. '
Proof, (i) For any ve>0, 36(e)>g¢ such that if ]x(0)1<6(e), we
have |x(m)[<e (m&l), where €20 is g sufficiently small number.
Suppose now that the result is not trye. Then for 1/n (n is g natura]
number), when lx(0)1<1/n, dT(n)€I, we have ]x[T(n)]lze. Since
Vix(my, m) is a positive definite function, there eXiSts a positive
aumber >0 sych that
V(T (ny), 1= *)

We notice that the trivial solutiop of system (2,1) is stable, that
is, for A>g, H1(A)>0 when [4€0) | <#(1) we have ly(m)| <. Then by
Theorem 1, we conclude that lV[x(T(n), TJ]<ly(T)f</1. It contra-
dicts inequality (*) and Theorem 3. is established.

(ii) By the proof of result(i), it is evident that system (2,2) is
stable. Since lim y(m) =0, we get lim V(m) = ¢. Because function Vix

m—»o0 mM—>»co

(m), m) is positive definite, i, e, for Vmé&l, V Cx(my, ml = ¢lx(m))

then lim SLx(m))=g implies that lim *(m) =0, Thus the proof i
M-»00o M=o

complete.
Theorem 4, if Vix(m), mY:R*I-R, is a positive definite function
such that

VEx(m+1),m+1]l(2.2, =VEg(xm),m)), M+ 132 fV (m), mlyme],
where XV (my, mIEH . If the trivial solution of Eq.(2.1) is unstable,

Proof, For a1y Ve>0, no matter how we choose 8(e)>0, such that
if [x€0) | <b(e), there always exists a time T'€1. When m>T then
|2 (m) | > ¢ (Vs=1, 2, oy ). Suppose now that this is not true, i. ¢,
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we always have [x.(m)|<le. Since V(x(m), m) is positive definite,
then [V(x(m), ml| <A (A>0). Notice that system (2,1) is unstable,
i. e. for >0, no matter how we take n(A)>0, if |y(0)|<<n(1), there
exists a time KGI, when m>K such that |y(m)|=A. Particuarly, we
can take y(0)>0, then y(m)>0 for all m&I. Now using Theorem 2,
when m>max{T, K} we have
[Vix(m), mI|=|y(m)|=>4
Thus we obtain a contradicton and the proof is complete.
i, The Case of N~ Dimension Vector
We now consider the vector— valued comparison difference equation
of the form
y(m+1) = fCy(m), m) (3.1)
where y(m) CR", mEI, fly(m), mI:D—->R" is a function definited on
open set D in R"™'. The elements in R™*! are (y(m), m). We assume
that the solution of Eq.(3,1) satisfies unique existence condition and
denote it by y(m) =y(my y;, 7) which passes through point (7, ¥, ).
We assume that y(m) =0 is an isolated equilibrium.
Definition 3, A vector— valued function flx(m, m)={f,Cx(m), m),
oy fulx(m),m)}" belongs to class H, (expressed as fE€H,) if for any
(x" (m), m), (x"(m), m) ED, such that x’ (m)<<x"(m), the inequality
filx! (m) ,mI<filx” (my,m) ym€Ely i=1, 2, -, n
is satisfied.
Theorem 6, For x(m) €R" if x (v) <y(7)=y,, and if
x(m+1) <fCx (m), m)
where flx (m), m) s R"xI>R", f(x (m), m) €H,, assume that y(m) is
the solution of Eq, (3,1), then inequality x (m)<y (m) holds for
all melr,
Theorem 6, For any x» (m) €ER", if x(z) =y (r) and if
¥ (m+1)=fCx (m), m)
where f (x (m), m)EH, : R"«]-> €R". ym €1, then inequality x (m)=y(m)
holds for all m€I. We assume that y (m) is the solution of Eq.(3.1).
The proofs of Theorem 5§, and Theorem 6, are the same as Theorem
1, and Theorem 2, But we must notice that x (m), y(m) and f ()
are n— dimension vectors. .
Now we consider system
¥ (m+1)=gCx (m), m) (3,2)
whese x (m) €R", m&I, gCx (m), m):R" ~I-~K", We assume that the
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solutions of Eq. (3,2 ) astisfy unique existence condition, 4 (m) =

Theorem 7. Assume that

Vix (m), my= V) Cx (m), Mlyrey Vo Cx (m), m] T

is an n~ dimention vector Lyapunoy function, Vix(m), mJ:R" IR,
its every Componen( ¥, Cx (m), my: g IR, is a bositive definite
scalar Lyapunoy function. On its domain of definition, if
Vix(m+y), M+ 500y =V (g (x Mmsm)y m+13<f v (m), m)

where f(y (m)y mycH,: pr xI->R", m&I, Then the following statements
are trye,

Cii ) If the trivial solution of comparison €quation(3,1)is uniform-
ly asymptotically stable, thep the trivial solution of system ( 3,2)
is also uniformly asymtotically stable,

Proof, In fact, according to Theorem 5. we have V () <y(m),
VmeEl, 1o ¢ fer €very component of V(m) and y(m)

Vi(m) = ui (m) (i1=1, 2500, m)

By the proof of Theorem 3, Theorem 7. can be obtained immediate.
ly.

Theorem 8. Assume that ¥y (m), m), v, (X Cm), m) f(V (m) ym)

are the same 55 Theorem 7. If

V(x (m+1),m+1][(3,2, =V (g(x (m),m),m+1] =1V (m), m)

and Theorem 6. the statement js 4, evident faci,
Iv. Applications of Comparison Principle and Decomposition
of the Large - scale System

called “comparison Principle”, We assume thay

(P x(m+1) =g Llx (m), mI+h(x (m), ml2q (x (m), m)
(Zi), =z (m+1) =8 (2 (m), mY+h 2 (m), m),

(92 2 (m4 1) =& (2 (m), my

t=1, 2500, 7,
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where (3;) is decomposition of the composite large — scale or inter-

connected system, (@), (¢i) are isolated subsystems of (o), x (m)
ER", 2 (m) ER, mE], Zi_ ni=n,

The origin is the unique equilibrium point of (¢) and (@),
Definition 4, An isolated sub~system (®;) possesses Property

A if, on domain [x(m) | <M, m€I, there exists a positive definite
function V;(z (m), m): R xI->R, such that

AV Czi (m) s m3| iy =V C2i (m+1) ym + Dl =V ai(m), mI=V (g (z(m),
m)y m+13=V (& (m), m)=o0; s C2; (m)]

where ¢ is a constant, ¢z (m)) is a positive definite function in
which m is not explicit.

In fact, we have assumed that there always exists a positive defin-
ite Lyapunov function of the subsystem (¢;) here. Clearly, if o;<g
the equilibrium z (m) =0 of (@) is stable (or asymptotically stable).
If 6>0 the equilibrium of (@) is unstable.

Theorem 9, For the large ~scale or interconmected system ()
with decomposition (Z, if

(i) Every isolated subsystem (®;) possesses Property A.

(ii ) We take a vector Lyapunov function

VCx (m), m)={V, Cz, (m), mly ey Vo 02 (mYm, m)T,

such that

Vitzi(m+1),m+1) I(Zi) = filV(z(m)m,m)

where filV(m),m)EH,, i=1,2,-,7, Then the uniformly asymptotical
stability of the trivial solution of the vector comparison eqﬁation
(3.1) implies the uniformly asymptotical stability of the trivial
solution of the interconnected system(g). In this Theorem we may
assume 0i <0 (i=1,2,+,r). Thus we can get the stability of the
interconnected system (p) from the stability of the subsystem (g;)
That is, the interconnected terms of (@) is as a disturbance to
composite system. As a particular form of Theorem 9, we have
Theorem 10, For the interconnected system (@) with decomposition
(Zi), if

(i) every isolated subsystem possesses Property A. and

(i1) its Lyapunov function ViCzi(m) ,m), RY<I—-R, satisfies in-
equality ’
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r
Vilzi (m + ,m+ 13((2.) = Z GV, EZ,'(m),m],
j=1
[‘: 1,2’... "'r.

or V(m+1) = GV (m)
where G js aq X7 constant matrix which elements Gi; >0 (i,j = Ns 2,
" s7) and f[V(m),m]:GoV(m) €H,;

(iii) all the eigenvalyes of TX7? matrix @ satisfy |u;| < (1=1,2,
7)), Then the trivial solution of composite system (g) ig unifoz'rnly
asymptotically stab]e.

Using the Principle of stability p the first approximation and
Theorem 1¢. e immediately obtain the following resyly.

Theorem 11, For interconnected system (@) with decomposttjoy

(2, if every subsystem (91) possesses Property A and Vim)y is a

vector Lyapunoy function, suech that
Vim+ 1), 2) SOV + PV my,my ()
where {GV(m)+f*EV(m),mJ} GH,,f*EV(m),mJ Is assumed to consist of

sécond or higher order terms j, .
lim If*EV(m),mJl/lV(”I)l:O,
V{m)]-»o

asymtotically stable.

(i) If the inequality (%) is reversed and if ¢ has at least one
eigenvalyes which absolute ~ valye Is greater thag unity, the trivig]
solution of intercOnnected system (p) is unstable,

Example_ Consider the 2-dimensioga] system

, ~ . ay(m) 3 7
Ix(m+1)— ]m +y“(m)
(4,1)
b
l yim+1) = . x(m)\ +x%(m)

IT+y2(m)

m=0,1,2,-'-,
where a ang are real constants, x(m) ,y (i) CR,
We take VEx(m),y(m)J:x'z(m)+y2(m) and notice that inequality
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(@1 +ay) ' "< (d' +ay)/" is true for a,,4, =0 and 0 <t <s, Then we

have
Virtm+ Dayme | = [—l-iyx(z—"é)m Fy*(m) ]2
a*y*(m) F b*x*(m)

N [ bx (m)

5 2
175 (m) +x*(m) J <

(2t (m))E C1+g%(m))

2lal-lyeml*  20e]-becm))?

< M2[ 2
T+x%(m) Ltgi e

Foxt{m) +yt(m) +
+ytm))+ x4 (m) +y*(m) + 2x*(m)y?(m) + 2Mx%(m) +y*(m))3 '
=MV {x(m) ,y(m) I+ V20x(m),y(m)] + 2MV 312 x(m],y(m))
where M =max{lal,|b]}. Its comparison system is
r(m+1) = M*r(m) +r*(m) + 2Mr®/*(m) (4,2)
The origin is a unique equilibrium point of equation ( 4,2)in set
S={rlr€R; 0<7r<(1-M)?*} and

m  CriGm) +2M 3 72(m)J/r(m) =0
r(m)-»0

By Theorem 11, the trivial solution of Eq. (4,1) is asymptotically
stable if condition M? < 1 is satisfied.

V. Conclusions

We can use the comparison principle and vector Lyapunov func-
tion to get the stability properties of large—scale discrete—time
systems from its subsystems. Generally speeking, we can always dde-
compose the n—order system into r—order (1 <<r <n), But the step

may bring about some conditions which are not neccssary.
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