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Abstract

A structural aleorithm of matrix sequence is introduced in this
paper. S5ome applications in linear system are nresented to show that

a cousiderable part of linear sysiem theory can be (reated by this

approach.

Introduciion

In control sysiem theory, for the convienience of analysis and
design, some relevant general processes are often summed up to a
kind of algorithm for making program. For example, Roscubrocktt?
presented the algorithm of findiag the system decoupling zeros.
Wolovich™?? found some alvorithms related to polynowmial matvices.

Silverman®?®?

got the input —output structural algorithm in state space.
Wonham'™** obtained the algorithm of finding ¢ A, B) - invariant and
controllability subspaces {rom a geometric approach.

We proposed a couple of similar clgorithm for vealization of

o0 and for finding the grea-

disturbance resistance by state feedbar’
test common divisor of {wo polynomial matrices"®?. These algorithm
are summed up to the structural algorithm of matrix sequence in

this paper, some related problems are discussed as well.

Structural Algorithm of Matrix Sequence

Consider a matrix sequence

LéELoLle'“LvJ’
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where Li is mx | matrix, 1=0,1,2,, ¥, (?+1) is called of the length
of matrix sequence L, L, is called the leading matrix of L. The
matrix sequence can be viewed as the coefficient matrix sequence of
polynomial malrix (CMSPM).
We concentrate our attention to nonzero matrix sequence
(L#0)-
Definition. [f a CMSPM satisfies

N Al e &) Il
i o Ean (L Yy )
v 0 0 0 0
i1 ) —I:, full row rank,
then the CMSPM L is called proper sequence.
Let
M
Li= l.zi y 1=0,1,2,,7,

I

We introduce the structural algorithm for the CMSPM.
Algorithm Step 0. Plumge a column vector with integer element

«j, before the 1—~st column of L, we obtain

O
L’=‘-‘-[ 85 L ]

Gm
Set
My <E===1l,
aj <=7, JEm

Step 1: For j€m,, if Ij,=0, then

lire==lji,, i=0,1,,0;—1,
liaj$=0,
o;E=0;—1;

Step 2: Exchanging the rows of L', such that
U 0, 0m,

And let

m, <&=max{k|a,=0};

Step 3: If I,4, L9, +Imys are linear dependent, that is

L g =t o B bngee s o s AR s S L



32

CONTROL THEORY AND APPLICATIONS

Vol.3

then

t
’;lz@—“l]lz _kz Bkli‘kl'y 1=0y1,2,0,V,
=2

Obviously ]]. 0 =0 Go to step 1;
I

Step 4: I, lzo,"',lmlo

are linear independent. STOP.

The algorithm can be summed up to a series of left shift, row
exchanges and restricted eleminations of the leading matrix. The
algorithm always stops by finite steps. At the end of the algorithm,

the matrix sequence is proper. In that case,{m,:a,,a,,°,am,} is call-

ed the structural index of matrix sequence L.

Applying the above structural algorithm to the coefficient mat-

rices of polynomial matrix

P(s)=Lys¥+L,s"t ++-+L,_;s+L,

is equivalent to carring out the row elementary transform of poly-
nomial matrix for P(s). And the step 2 is row exchange for P(s),

step 3 is left multipling P(s) by the following unimodular matrix

7 L
jooth— 1 _ﬁzsan—a;‘z _ﬁtsajl—ajr
ja = 1
jooth— 1

Let the transformation matrix is U(s), and

U(s)P(s) = [P“) ],
0

then m, is the rank of P(s) and

a,-:c?r_ CP(s)], 7

(1)

(2)
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T cP())=L,,

where L, is the part with full row rank of the leading matrix at the
end of the algorithm.
We can obtain the U(s) and/or U~'(s) through the structural

algorithm in a similar way to the method proposed by Han & Chen
rej

Constructing of the (A, B) —Invariant Subspace

Consider the problem of disturbance resistance for linear time —

invariant system

%:;=Ax+Bu+Ff, (3)
y=Cx+ Du,

In [5), we discussed this problem for arbitrary disturbance f, and
presented the necessary and sufficient condition of the solvability
for the problem and the required solution (i. e., the state feedback
matrix).
Here we construct the matrix sequence
{D CB CAB---CA*"'B),
where
v=min{j|rank(B AB--A'"1 B)=rank(B 4B---A'BJ},

Using the structural algorithm we get

{ N\
a, |
A, A, A, 4,
|
a,,.ll
-1 !
I
4,0 0 0 -0 ,
e

where A, has full row rank. Right shiftting the j—th row of matrix
sequence

EAO Al Az"'A‘pj
hy (v—a;) blocks, i,e,

aii €=aji_y-a,s 1=V, V=1, ,V—@a;,

ajk‘:(), k=0,1,"',1}'—a,'_1’

where
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Let
TCB AB-A"1BI=(4, A, 4,], (4)
and defline
~ E'I.
cz[ Co.
Cm,
Obviously,
EjAkB=0,k=0’1""1(v-ai—2)
and
5 \
e Av—al-—l B
:Aoy
m,

when o; =", EjA‘lBé- Z-,in which

dy
D= |d |,
do

and D is determined by D, Introduce

E.’l A.V—a{1 ‘

Ca

o
V—-a
Cm, A il g

From (5, it is known thar

m, Vv—aj

n . caw (5)

j=1k=0

is the supremal (A, B) —invariant subspace, where
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A A~ BE,,
Ko=A435C,

and Ay is the right inverse of Ay, i.e.
Aoﬂ‘,gzlml J

And define

KerCid ™t =x, Vi,

Anplications To Linear Systems
P

1. Properizing of polynomial matrix
For a polynomial matrix
P(s) =P ¥+ P;s?  + -+ P, s+ P,, PitpxXm
which is of full rank, we can transform it into a row proper poly-

pomial matrix by polynomial matrix transforms®?‘.

Now applying
the structural algorithm to matrix sequence
(PP Py By
we have
y

4

17 > .. P o)
o P By
63

iy

= ]l

|
|
|
|
lr
i o 00 0 |

L -1 /

Obviously m, =min(p,m). Let U(s) be the unimodular matrix deter-

mined by the structural algorithm, and

P(s) =U(s)P(s),

Thercfore P(s) is row proper.

2. Finding the greatest common divisor of two polynomial
matrices.

Suppose two polynomial matrices P(s) and R(s) have same col-
P(s)

$)

P(s) I Py v, Pl]p_ % [Pv-1] [Pv]
[R(nl"[ROJSF[Rl e R,y oy R, J°

unin number and[

]has full column rank,
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S
Applying the structural algorithm to matrix sequence
)
R, \ R, R, /\R, /[
we bave
(o, I )
: Ao Al"'Av-l Av
1
am, ; .
-1
P00 00 0
n. _1 I /
Obviously
P(s)
ml=rank[ R(s) J,
i.e., Ay is nonsingular matrix. L et
¢ 1 g St
G(s) = o) 4, + " 0|A +
0 somy 0 syt
\ (=}
fsal—(al—l) ) /I 0\
n
o
0 0
+ 4, 1t Aa .
% — (o —1) ! !
0 Syt 0 0
L T J \ )
Then G(s) is a row proper nonsingular polynomial matrix, and
[UH(S) Ulz(«V)J[ P(S‘)J_[ G(s) ] (6)
U“(S) Uiy (s5) R(s) 0 g
where
U(s)é[ Ui () Uys(s) ]
U, (s) U,,(s)

is the unimodular matrix determined by the structural algorithm. And
G(s) is the greatest common right divisor (r.c.rd.) of P(s) and
R(s). When o, =0, the two polynomial matrices P(s) and R(s) are

right prime. E;. (6) can also be expressed in the following form
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[ 2 ]=[ﬁu<s> GO ElIe® HT ] -6
R(s) - U,, () U,:(s) 0 Uy, (s)
Whereﬁll(s) and [/}“(s) arc right prime.
3. Solving of Diophantine equation
The polynomial matrix equation
X(sYP(s) + Y (s)R(s) = M(s) (7)

:s called unilateral Diophantine equation of polynomial matrix"®’?.
First, the equation (7) is solvable if and only if the r.c.r.d. G(s)
of two polynomial matrices P(s) and R(s) is a right divisor of M(s).

Suppose P(s), R(s) and G(s) are same as in “9v.

i) Like the manner in “2”, we obtain G(s) by P(s) and R(s).
fo, =0, then the equation (7) has solution.
ii) When o, 0, let

lr g((ss)) ]: ( Aé: }Su [ Zgl ]S#"1 o [ ]g:_: ]H [ ] ]

Obviously
M (s) P(s)
rank[ G () ] =rank G(s) =rank [ R(s) ]

I {mieBisBas058 G
0

{ M1 A[,Lt_l > IVI,U ) d 5 .
\ G, >( Go. ( G, , then equation (7) is solvable if and

only if

. . : M,
% }is structural index of matrix sequence
1

(8)

U+, Feeto =B FBy ke +
1 A 7n.l 51 ﬁZ Bml .
Decomposition of rational fraction matrix and minimal real-

4.

izafion

Consider the px m proper rational fraction matrix

W (s) = Lwi;(s) ],

where
wii(s) = i (8)/pii(s)
0(gii(s)) <A Fii(s)), V 1,47,
Constructing mxm diagonal polynomial matrix

Mi(s) =diag{ pi1(s)sDis (8 + spim(s) }

and 1 xm polynomial matrix
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Ni(s) =0gi 1 (8) qiz(8) qim(s)],

Seeking the r.c.r.d. of M:(s) and N;(s) according to “2”, we obtain
[U§:> (s) Uy (9 ] [M.-<s> ] (G.(s) ]
U () Us (o) 1 L N o I

Ci1() g2 () qin(DI=ULY ()5 pils) = =U §¥ (5) ,

Write down

Constructe
QY=L qi(s) I,

P(s) =diag{P,(s), P,(s)y -5 Py(s)},
then
W(s) =P 1(s)Q(s),
i,e., P(s) and Q(s) are a left decomposition of W(s),

pr .
For[ QT((i)) ], according to “2”, we obtain

(53 )e Gia oo

here P(s) and Q(s) are a left irreducible decomposition of W(s). Let

P(s)=Pys"+P,;s* '+ +P,_ s+ P,

5(3) =603v+ 515”" sl +—Q—v—15+0—v.

For the matrix sequence

[?o ?l —P—v 1ij’

carrying out the structural algorithm, we obtain

o, !
(17 ma 7 )
|

Op

Doing the same thing to matrix sequence

[Qo Ql"'Qv_l Q.] ,

we obtain

Since
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9(qi;($)) <A (Pii(s)), Vis Js
therefore
9, WHON< I, UGPG)), Vis
b 2}
i.€.s F‘J:O. Let
y
st 0 [ oS ¥ By 0
(P(s) Q)= (4, 01+ | 0 BT
0 % ]I 0 Sanl—l
i S
SCH‘(OH_D 0 )
E T O .Sanol___-l(a‘_l) EAal_]_ B(Xl—lj
o
b ot e
i Yl
B ! ; o Qtj
0 0o
Then
W(s)= P()7'0(s) =4, C P()A, ™7} 0(s),
Let
A; e B; —
(\0):-‘_015(0):13;"
where A, is a #;Xp matrix and B; is a #; Xm matrix.
Thus introduce
L by’
0 - AO(1 | ( BO(1
1
0y 2L
( 5 ) 0 0 nal_l B0C1—1
A= . =
= ( o, —1 ) » B= ’
0
0 - A, B,
iy
0 ( A ) -4, e
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O3 @0r 10 A58
Then

{ x=Ax+ Bu,

, (9>

y=Cx
is a minimal realization of W(s) in the state space™®’.

5. Determination of transformation matrix into Yokoyama ca-
nonical form

In (9), we express the complete controllable system

{ x= Ax + Bu, B full column rank,
y=Cx

(10)

as the following form

(DI - A)x = Bu,
U y=Cr,

Since system (10) is complete controllable system, therefore (sI—A4)

and B are left prime. Thus applying “2” to matrix sequence

[ () (d B

(200 [ Tt =g

After applying the structural algorithm to the coefficient matrix

we get

sequence of U, (s) and U,(s), we obtain the transformation matrix
that transfer the system(10)to Yokoyama controllable canonical form
and those submatrices.

When system (10) is sot complete controllable, there is a similar
result(®-,

6, Eliminating zeros using the state feedback

Suppose the system (10) is complete controllable, x €R", u&R",
yER?, B and C are full rank matrices. The transfer function of the
system is

W (s) =R(s)P71(s),

where P(s) is the column proper. Let

R(s) = Ri(s)R, (s),

here R,(s) is kxn matrix




The Structural Algorithm of Matrix Sequence

No,2 and Linear Systems

s [ p=m
tm P>me
If R, (s) has full row rank and

aCj (R.(s)) <(’7"C)_ (P(S)), Vh

then we can determine the state feedback matrix by the structural
algorithm for the coefficient matrix sequence of R.(s). And in the

transfer function of the closed loop system, R,(s) is eleminated®?®?,

Conclusion

This paper proposes the structural algorithm of the matrix seq-
wence consisted of the coefficient matrix of polynomial matrix. The
algorithm always stops by finite steps. At the end of carrying out
the algorithm, we can obtain a row proper polynomial matrix and
the power of row, and can record the transfer matrix and/or its in-
verse according to the request.

Using the structural algorithm, we can solve some problems in
polynomial matrix theory and linear systems theory. For example, we

can find the supremal (4, B) —invariant subspace of a system and

solve its DDP; get the row proper of a polynomial matrix; find the r.c.

r.d. of two polynomical matrices, solve the unilateral Diophantine
equation of a polynomial matrix; carry out the left decomposition and
left irreducible decomposition of a rational matrix; find the minimal
realization of a transfer function matrix; find the transfer matrix
and sub—matrices which bring a complete controllable system to
Yokoyama controllable canonical form and find the state feedback
matrix which eliminates the zeros of atransfer function, etc. Using

the principle of duality, we can solve the dual problems as well.
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