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New Explanation of Canonical Structure

of Linear‘,ControlSystems and Its Algorithm
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( East —Chin‘a Normal University, Shanghai )

Abstract

By means of the concept of absolute observability the canonical
structure for linear control systems is given a new explanatiop, which
claims that the canonical structure consists of four parts, i. e. absolutely
observable and controllable; absolutely observahle but uncontrollabley
absolutely controllable but unobservable, absolyutely uncontrollable and
unobservable. In our framwork the canonical structure can be obtained in

elementary matrix Operations.

I. introduction

It is known to us that there are some definite, structure
Properties, which are related to a given linear control system (C, 4,
B). These propertieg are invariant under various transformation
groups, and then g canonical structure cap be imposed on the given
system under 5 transformation group. A. S. Morse (1) provided g
canonical structure of (C. 4. B) related to the group Gs, the actions
of which on (C, 4, B) are defined by

(T',K,F,G,H)
(C,A,B) T = (HCT", T(A+ BK +FC)T=' TBG) (1,1)

where T, H, G are nonsingular matrices and of appropriate sizes.
‘Recently the concept of maximal absolutely observable subsystem
and an algorithm of it were advanced [2,3). By this concept and itg

dual the canonical structure of system has a new signilicance and it
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can be obtained by a primary technique, which depends on the

elementary operations. In the process some important properties of

system are discovered. The system is dCS(iribed,as follows - : ' o

y=Cx ' |
or in matrix form -
A B : . , , |
[ C 0 ] , L3

Given nonsingular matrices T, H,” G in (1,1),  the ‘follmving
system matrix is called generally algebraic equivalent to (1.3)
' [ TAT-' TBG ] :

HCT=' g (14)

f H, G are unit matrices, then the action of (1,4) is naméd by (T)
—action. Similarly, we define the (H)- action and (G)-—actlon, as
well as the (T',H) - action and so on.

Definition 1,1 For any K €R™*' the system matrix

[A+BK B] !

5;
C 0 (1 )

is called state—feedback equ1va1“nt to (1,3), The action is called
(K) - action, s ' '

Definition 1,2 For any FER™!  the system matrix

A+FC B R
[ ] Lo
is called dual-state—«feedback equzvalent to (1, 3) The action is

called (F) - action, : e SR :
Definition 1,3 System (1.3) is called absolutely  observable system
(a. 0. s. for short) if its observability is reserved under any (K) -
action. Dually, system (1.3) is called absolutely controllable system
Ca. c. s. for short) if its controllability is reserved under any (F)
- action. -

I Canonical Structure Unde: Gs

It is not difficult to transform (1,3) into following block -
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matrix form by a (T') - action

() (A AP B
(L3)—>| 4, 4,, : B, | EEEEERY
. 0 c, 0

In the form (2,1) the triple (Cys Ayys By) is regarded as a
subsystem of (1,3), If the rank C>0 in (1,3), then there at least
exists an a. o. subsystem of (1,3), E.g.in (2,1) if C, is nonsingular,
then (C,, 4;,, B,) is a. o.. ;

Definition 2,1 Among the a. o. subsystems of a system, the
subsystem is called the maximal a. o. if Ay, has the largest size in
the forms (2,1),

Lemma 2,1 (1,3) is algebraic equivalent to the following system
by (I') — action,

i Au sz Ai" Bl \3

A, A A 0
21 22 23 (202)
Asl Asz ASS BS
o C, C, 0

where 1) Ne(C, C,)=Rank(C), (Nc(C): = the number of columns of
cHy, ‘ ‘
2) B, has full row rank,
3) The non-zero row vectors in B, and B, are
independent, or say, B, and B, are row independent.
The proof of it refers to 27,

Definition 2,2 (2,1) is given, if (Cyy A5, By) is an a. o. s. and
there exists K, such that Ay +B,K, =0, then, say, {(2,1) is of
maximal absolutely observable/ canonical form (m. a. 0. ¢. form for
short). Dually, we have the m. a. c. canonical form.

Lemma 2,2 Assume that (2,1) is of m. a. c. Canonical form and

B, =0, then there exists an. action of Gs, such that

Ay 0 0 \ﬁ
(T,K,F)> —~ |
- > 0 Azz Bz

(2,1) g
i
0 Co o0 |

(2.3)

Proofy By the algorithm of m. a. 0. canonical form in [2]) there exists

a (T, K) —action by which (2.1) can be transformed into one of the
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followinog forms;

Ay ¥
0 A, Lk 0
[E) a8
* , B, (2.4)
0
0 [0] (] 4 [ )
¥* %k Bo
L 0 0 0 creerenes Chay 0
(A, * K eenaes % 0
O -~
0 AL ko eeeen ¥ [B_: |
o 0 ~
0 [Cz} AZ ...... sk [_
ok B, (2.5)
0 0
0 [ ] 4 [*_
* ’ B,
L0 0 0 e Cpes 0o

where * represents block —matrices. In (2,4), C; (i=3, 4,:~-;,' p)
has full column rank and (Ciy, 4;) is observable. In (2,5), C; (i=
2,3,y p) has full column rank. The algorithm of cancelling the

first block —matrices except A, in (2,5) can be described in

following,
xA,,Cy* )
0 ——— (+)
S y O
All 12 * 0
0 4 * ’ S (2,8)
-AI;Z'?‘*.X [Cz }
®
v 0 '* .

where C,* is the pseud —inverse of C,. On succession of executing

the above algorithm as (2.6), the (2.3) is obtained. In. (2,4) the
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pair (C, A,) is observable, thus there exists & F, such that sp

(=Ay) Nspld, +F,C,) = o(if sp(—~A,,)Nsp(4,)+*¢, then let F,=0).

Execut operations on the system (2,4) as follows;

,XV(
— (=)
(+)/ ! i
(+) All AIZ * All Aiz * 0
P 0 Al E S Vl % B 0 //Il % 0
F, « E 0 c, 3 g ‘\ 0 7

where A =4, +F, C, such that Sp(A Y (1 sp(=4, )= <]5 and V, is the
solution of Sylvestre’s matrix equation, 4,, V, — V, A =A;,. In what
follows the algorithm is as same as in the case (2,5),

Proposition 2,1 Given system (2,1), by (T) - action we get

7

A0 Ay Ay, 0
Agr Ay, Ay, Ay, P OB,
(2,1)——— > 1 Ay Ay, Ags Ay, B, 2.7
0 0 0 Age 100
L O O C3 C4 : O
where 1) Ay, Ay, B, .
subsystm;

2) (435,85 and (4,,,B,) are controllable pairss

3) B, and B, are row independents

4) (2,7) is an m. a. o. canonical form. i. e. there is (K, K,)
such that (4, A,,) +By(K, K,)=(0 0). |
The proof reffers to 23],

Lemma 2,3 In(2,7) B,, B, are row independent, then there exists

0 0 0
GER™™ uch that | 22 | o= | Bt 0 (2.8)
| By 0 B, )
0 0 0

Theorem 2,4 There exists an action of Gs such that
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(A 0 0 0 0+ 0
0 A, 0 0 P B,, 0
(IWKFGHY |0 0 Ass 0 0 0 ,
(2,1)‘ “““““““““““““ —> 0 0 O A 0 -B42 (2.9) .
0 0 C“ P00

where (4,,,B,,) is controllable, (C”, s3) is observable, and the

(C'“,A“, 42) 18 a. O. C..

To save the space we ommit the proof, it can be understood by
means of lemma 2,2 and 2,3. L

The form (2,9) consists of four - parts, they are absolutely
unobservahle aud uncontrollahle; a. c. but absolutely unobservable; a.
c. but absolutely uncontrollable; a. c. and a. o. simutanousely.

The form (2,9) is called a canonical structure of linear. control
systems. : : o '

o, Structure Invariants of (C, A, B)

In this section two Lypen of simplified canonical structures are
advanced, one is same as Motsc s (1], but we get it in a different
way; the other is based on the Yokayama canonical form. ;
Notation,1) (m;; i=90,1,2, -,v] ~is the  controllability ind?ex of

Yokayoma form of (C, 4, B), o o
2) U j=0,1,2,0-,7)  is the - observability = index - of
Yokayama form of (C,4,B). il
Because of the space limitation, we do not give the full proofs of

main results

Lemma 3.1 the triple (C,4,B) is a. o. ¢. only if A4,, has full row

rank in (2,2),

Proof. The key step is to transform (2,2) into follovung form

by an action Gs

(A, 0 0 Byy 0 )
. Ay 00 0 0
(‘)F7Gﬁ )
(2,2) |——m e PSR E A SRt
0 Ciy 0
0 Cyy 0

The details are ommited to save space,

(3,1)
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Lemma 8,2 Assume that the system have the form (3,1)
already.

1) (C,A,B) is a. o. c. if and only if ’bOthk(C13’09B32) and

B
( (0C,,), [A” 0 ], [ O“J Yin (3.5) are a. o. c.,

A 0 B,, ‘ - k
2) (Cyy), [ , ], [ ]) is a. o. c. if and only
Ay, 0 0

if (4,,,4,,,B,,) is a. o. c. ‘
Theorem 2,1 If (C,4,B) is a. o. c., then
1) Nc(B)=Nr(C)(:=the number of the rows of C),
2) (C,4,B) can be decoupled as a composition of following types

of subsystems by an action of Gs

0 0 oo 0 I,
Ca) 0 ‘ ,
I, 0 - 0 0 0 .
o 01, ), 1=1,2,0,
0 0 I, 0 0

(b)) ,,0,1,),

Write s; =size(I.), which are invariants.

Theorem 3,2 If the complet system (C,4,B) is given, then (I,
Lyyooy 1)y Umyymy oo ym,) and (sy,8,,,5,) are invariats of (C,4,B)
under Gs. The invariant factors of 4,, in (2,9) are invariants, too.

Remark There are definite structure parts for linear systems.

They have three types.

we
1
=

a) x=u b) x=0 c)
Yy =% ¥ =%

a) is the a. c. o. part; b) is the a. o. part; ¢) is the a. c. part. A
system can always be assembled by these parts.
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