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Abstract

This paper bresents a new approach to estimate parameter of time-varying
systems with observation noiseC13, It consists of two-stage coupled adaptive
estimators, The first stage is state estimator by agp adaptive recursive
filter for systems with multiple time delaysCZJ; The second stage is
bparameter estimator by an adaptive Kalman filterrs), Introducing the
fictitious noise, we combine the model errors caysed in coupled algorithmsg
into the fictitious noise, so that model errors are compensated and
effectively overcome filtering divergence, The simylated example is given

to show the usefylpess of the newly Proposed approach,

Probiem Formulation and Results

We consider univariate linear discrete timevarying systems
modelled by following
n
#(k+1) = Emk)x(k-z‘)+b,-<k>a<k~z‘>+w<k> (1)
‘ i=o
where x(k) is state variable, u(k) is control variable, ang w(k) is
unknown Gaussian white noise, i. e. ,
E(w(k)):g, coviw(k), w(j)3=Q68,;
where, E denotes the mathematical expectation and cov is the
covariance symhbol, and &,; is the Kronecker function.
Introducing vector,
‘9(’{):[00%)7”',62“(@; bo(k),y oo b, (;)IT
—_—
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where T denotes the transpose.
It is assumed that the parameter is modelled by following

random walk

Ck+1) =0k) +alk) (2)
and the observation equation is described by
y(k) = x(k) + v(k) (3)
In Egs. (2), (3), a(k) and v(k) are unknown Gaussian white noise,
ie €0,
ECa(k)) =s, cov(alk), a(j)) =58 (45
Ek)) =7, cov(@(k), v(j)) =R8,; (55

and v(k) is uncorrelated to w(k) and o(k) is uncorrelated to v(k).
The problem is to estimate the timevarying parameters and to
estimate the state at each k, based on observation data up to time
ky g(1),ee,y(k). | '
It is interesting to notice that model (1) can be considered as
an univariate multiple time delays model [ZJ,Therefbre, we can

perform directly suboptimal recursive filter instead of extended

state Kalman filter (1J. Assuming that the estimates g(k/k) of

parameters are given, substituing them into Eq. (1), we have

n
2+ D= D aik/Dak=i) + bik/Dutk—1) + o) (6)
1=0
where w(k) =w(k) +model error term, w(k) is called the fictitious
state noise which combines the state model error into the noise
statistics. Obviously, the fictitious noise has unknown timevarying
mean and variance and can be considered approximately as Gaussian
white noise(3), Let .
E(w(k)) =q(k), cov(w(k), w())=0k)d,;; (7)
For system (6), (3) with unknown timevarying noise statistics,

we use following suboptimal recursive filter equations [2);

Y+ 1/k+1) =2k +1/k) + K, (b + 1)e,(k+1) (8)
n
2+ 1/ = > Cak/Dxt-j/k-j)
i=0

+ bk /By ulk = I+ () (D
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e,,<k+1>=y<k+1>—§<k+1/k>~?(k> (10)
K.(k+1) =Pk +1/k)(P(k + 1/k) +R(UDI (11)
P (k+1/k+1) = (I =K, (k+1)IP,(k+1/k) (12)
n
Pk 1/b) = > Ca}/P.(k=j/k= I+ OE) (13)
i=0 ‘

k1) = (1—dk)2(k)+d,,5{ e+1/k+ 1)

n
LS a0 3= k- Bk /butk=pY )
=0
(14)
Ok +1) = (1 —dypO® +d,{ Keths1)et(k+1)
; n
p kb D~ S B DRk ]
i=0
(15)
A1) = (L-dy) 700 +dyCylk D) = %G+ 1/B)) (16)
Rk+1) = (1 —dORG +d el +1) =Pu(k+1/B)] (17)

where dh=(1-‘b)/(l-—bk”), 0<<b<<l, b s called the f{forgetting
factor.
Now, substituting Eq. (1) into Eq. (3), we have

gk +1) = AT (RO +w (k) +v(k+1) (18)
where AT(k) =(x(k), x(k=1), 0, x(k=n); u(k)s ke —1), - uk—m)3
Once the estimate :x:(k/k) is given, we have
Wk = Cok/h) yoory £k =n/k )5 uCkD,
Wk =1) 5+ yu(k =13 (19)
Eq. (18) can be rewritten as
y(k+1) = KT (k)8 k) +1(k) (20)
where (k) = w(k) +v(k +1) + (h(k) = k()TE) s the Tictitious noise

which combines the observation model error into the noise statistics
<o that model error is compensated. Clearly, n(k) is timevarying

noise statistics. Let
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Ek)) =nlk), covin(k), n(j)I=N(k)5,;

(21)

From Fq. (20), we see that n(k) can be considered approximately

as Gaussian white noise. Hence, for system (2) and (20), we obtain

following adaptive Kalman filter cquations(3)

OCk+1/k+1) = 0Ck+1/k) +Kg(k+1e, (k+1)
Bk +1/k) = 0Ck/k) + S(k)

e, (k+1) = y(k+2) = B (k+1) 0Ck +1/k) = (k)
Kok +1) =Pyk+1/k) h(k+ 1)

CCRT(k+ 1Pk + 1/ Atk +1) + N(B)I~
Po(k+1/k) = Py(k/k) + S(k)
Po(k+1/k+1) = (I = Kg(k+ 1)A"(k+ 1) IPgCk + 1/k)
SUE+1) = (1= 8,) s(B) + BuL0Ck + 1/k + 1) = B (k/k))

S(k+1) = (1= B) S + B, iKgCk+ 1e* (k+ 1D K]k + 1)

+Py(k+1/k+1) = Pg(k/k))

n+1) = (1= B) 1 (k) + B, CyCk+2) — AT (k+ 1O+ 1/k)

NG+1) = (1= 8 Nk +Bule? (k+1)
— AT+ 1Pk + 1/k) Tk +1))

where f,=(1—-0)/(1-0**1), 0<<a<<1l, « is the forgetting factor.

22)
(23)

(24)

(25)
(26)
27)
(28)

(29)
(30)

(31)

Eqgs. (22)—(31) are called the second stage adaptive parameter

estimators.
]
ye . §(2) ) ¥(3)
——===4 Sigle Estimator State Estimator [ S
B C0/0) Parameter Parometer )¢ 2/2)
- Estinigior [ YIYTENR Estimator
x(1/1) B( /1 x(2/2) stima

Fig, 1 The alternative use of the two—-stage adaptive estimators,

If we choose sutiable initial values and forgetting factors o, b,

and alternatively perform this two-stage coupled

adaptive

estimation, the state and parameter can be updated on-line

simultaneously. Fig. 1 shows the alternative use of the two—stage
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adaptive estimators.

Simulation Example

To illustrate the wusefulness of the proposed approach,

simulated example is given. For

exogenous control variable w(k).

Let us consider following discrete linear timevarying

with observation noise.
xk+ 1) =a,()xk) +a, k) x (k- 1) +w(k)
a,(k+1)=a,(k) =0,65
a,(k+1) =a, (k) +a(k)
yk) =x (k) +v(k)
x(0)=0,01, x(-1)=0,1, a;{0) =0

the

simplicity, we do not consider

system

(32)
(33)
(34)
(35)
(36)

where w(k) is unknown zero-mean Gaussian noise, its variance
was assumed to bé (0,04)* in simulation; a(k) and v(k) are given
zero—mean Gaussian noise independent of each other and having
variance (0,1)% and (0,02)? respectively.

We chose initial values,
#€0/0) = 2(=1/=1)= 0.1, P.(0/0) =Pu =1/~ 1) =1,

2,(0/0) =1, @,(0/0) =0; Py(0/0) =1
In two-stage coupled adaptive estimators, forgetting factors a

and b are taken as 0,98 ang 0,975 respectively; Noise statistics are
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Fig, 2 Tracking pargmeters by the technique proposed,
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20y =0.001, 0(0)=0.2, (0)=0,001, N(0)=0,1,
On TRS—80 computer simulations were performed, results are
shown in Fig. 2 in which thick lines denote the true parameters,
estimates were updated very well after 200 steps by using the

suboptimal filter 'given in reference (2],
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