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Abstract

Using the decentralized control method, the intersection problem of
compensating spectra and closed —loop spectra is considered, For centralized
systems and decentralized systems respectively, we establish the necessary
and sufficient conditions for a dynamic compensator to exist so that the
compensating spectrum and its corresponding closed —loop spectrum do not
intersect by means of the vanishing concept introduced in the present paper.
In addition, the intersection of a compensating spectrum and its corresponding

closed ~loop spectrum is also found out when the conditions fail to hold.

Introduction

In control theory, the problem concerning designing a compensator
around a given plant so that the resultant closed—loop control
system meets certain design specifications such as, stability,
sensitivity, and structural stability, etc., has been much discussed.
Furthermore, the problem of stabilizing a plant using a stable
compensator has also been studied by Youla et al. (1974). However,
the further relationship between compensators and closed - loop
systems for a given plant has not yet been revealed previously,
except that Shaw illustrated the sensitivity of closed—loop systems
to parameters of unstable compensators in 1971.

For a given plant, it is very clear that a closed—loop system
will solely be determined by a compensator. If the intersection of
their spectra is nonempty, it is implied that some modes of the
compensator will directly affect the dynamic response of the

closed—loop system. Thus this part of modes is of particular
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significance. Because of this point, we consider the following two
problems in the present paper.

Do a compensating spectrum and its corresponding closed—loop

spectrum always intersect in other words, do there always exist

some modes of the compensator which appear in the resultant

closed—1loop system no matter how the compensator may be
designed around a given centralized or decentralized plant: If so,

what is their intersections

Preliminaries
Consider the following linear time—invariant system
x=Ax+Bu
y=Cx 2.,1)
with states x€R", inputs 2€R", and outputs yER", where R" denotes
the n— dimensional real Euclidean space. Let

I-4 B
V&{SEC‘; rank[s c 0}<n+1} (2.2)

where C! denotes the complex plane.
Evidently, ¥V can only be an empty set, a finite set, or the whole
complex plane.
Definition 1, V defined as above is called the set of vanishing
zeros of ( 2.1)3 the system ( 2,1)is said to be vanishing if V=C!.
Proposition 1, The system (2,1)is vanishing if and only if it
has no jointly controllable and observable mode, that is,
C(sI-A)"'B=90 (2.3)
Tts proof is omitted here for limitation of space.
Now, we consider the linear decentralized system consisting of

N control stations, described by the following model
° N
x=Ax+ 2 Bu;
i1

. _yi:cix, i=1,2,“-,N (2.4)
where x©€R" is the state, z;€ R™ and y,€R’i are the ith control
station’s input and output respectively; A, B;, .C; are constant

matrices of appropriate dimensions. Let

BarB, B, - By), CT=(C] C% - CQ2
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. ;
m2 3 mi, 74 37y,
j=1 i=1
K*# { block diag (K,,K,,*,Ky); K;ERM:iX7: 1=1,2,.+«,N}
Definition 2 ( Wang~ Davison, 1973 ). The set of decentralized
fixed modes of the system (2,4) is defined as

U£ {s€C's det (sI-A-BKC)=0,vKEK*}

The following result presents an algebraic test for the existence
of decentralized fixed modes. _

Proposition 2 ( Anderson—Clement, 1981 ) Given the N —control
agent system(2,4), s€0(A) is a decentralized fixed mode of
(2,4) if and only if there exists a permutation (T 1y yThyipg yee i)
of the set (1,2,--,N) such that

si—A B;, B,

Pee 0 )
rank <n

CiN 0 e

Definition 8, A subset F of R" is a proper variety in R, if it is
a proper subset in R and the coordinates of each element of F,
relative to a fixed basis for R", coincide with a zero of a finite
system of real coefficient polynomial equations in n-indeterminates,
and visa versa.

As well known, a proper variety in R" must be closed aad
nondense.

Proposition 8, Let U denote the set of decentralized fixed modes
of(2,4). Then for any finite number of points P={(p Py, ,p:)CH/U,
the set

Kp={p(K)s 0(A+BEC)(P+¢, KCK*}

N
with p(K) the 2 mir;~ dimensional vector formed by elements of
i=1

§=

w
. : . - 2T
K, is a union of a finite number of prcper varieties in Ri=!.

Its proof is omitted here.
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3, The Centralized Case

Theorem 1, Given the centralized control system (2,1, then
for any positive integer d there exists a q=—order dynamic

compensator of the following type

;:=Oz+Ry

u=Sz+Ky+v (3.1)
such that the compensating spectrum o(Q) of (3,1)and the
spectrum of the closed—loop system made up of (2,1 Yyand (3,1) do
not intersect, if and only if the system(2,1)is not vanishing.

Proof. Sufficiency. Assume that (2,1)1is not vanishing, then

the set V of vanishing zeros of (2,1) must be empty or finite.
Clearly, the closed —loop system composed of (2,1) and (3,1) can
be described as follows: :

(-0 DY

v=cc o7) EENE R

Ne R o

Tts state matrix is

{A+BKC BS]
RC 0

Thus the closed—loop spectrum is o(A). Now we are in a
position to find (Q,R,S,K)GR”“XR""'XR"'""XR""" so that
s(@)NaCdr=¢ (3.3)
To begin with, we take K€R™, and choose Q€ R¥*? so that Q

has no repeated eigenvalues and its spectrum 0(Q) is disjoint from
VUo(A+BKC). Then the following terms hold

rank(Q~si)y=q-1 (3.4)

rank(4d+BEKC~sl)=mn (3,5)

rank[A-SI B]Zn—H (3,6
c 0 ‘

for all s€0(Q). Observe that A can be rewritten as the fotlowing

form
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z;.[A;"BKC Z]+[3QJREC oJ+[f] STo 1,3,

So 4 can be regarded as the new closed—loop state matrix of the

following two~ control agent system

S N

y:=0C 0Jx

¥ =00 Ix (3.7)

under the decentralized static output feedback u,=Ry,, u, =Sy,.
Let U denote the set of decentralized fixed modes of the above

system. Then, it is easy to prove

(A NU=¢ (3,8)

Also by Proposition 2,(3.8)is proved. Using Proposition 3, we
can find a pair (R,S) € R¥r x R™9 g0 that (3,3) holds. Therefore,
the sufficiency is obtained. ,

Necessity. Clearly, it suffices to show that (3,3) is not true
for all (Q,R,8,K) € R™Ix Rv™ x R™ex R™r i the system (2,1) is
vanishing. For this, we assume that (2,1) is vanishing. Then we
have

{A+BKC—=SI 0 BJ A-sI B
rank 0 Q~sI 0 {=rank [ ]+rank(Q—sI)Sn+q-1
¢ oJ

: C 0 0
for all (Q,K) € Raxax prxr and s€0(Q), which implies from proposition
2 that 0(Q) is contained in the set of decentralized fixed modes of
(3.,7), i. e,

A+BKC BS
Q
for all (Q,R,S,K)ER"""XR""’XR"’""XR""". In this way, the proof of
Theorem 1 is complete.
Corollary 1,1, Suppose that the system (2,1) is vanishing.
Then for any fixed positive integer ¢, it holds,
A+BKC BS
o
for all (Q,R,S,K) € R4 x Raxr y Rrxq y prxr
Corollary 1,2, Suppose that the system (2,1) is not vanishing.

o0 o

U(Q)Ca[
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Then for any positive integer g, the set

2y= { p(O,R,S, K05 (Q,R,S,K) ERVIX R X R xR,

a(Q) ﬂc([A ;ch f])wﬁ }

is a proper variety in Rez+a+amim  where p(Q,R,S,K) is a
vector composed of elements of (O,R,S.K).
Proof. Let f (Q,R,S,K) be the resultant of two polynomials
A+BKC-sI BS 1 ‘
RC 0-sI J

real coefficient polynomial with indeterminates p(Q,R,S,K).

in s det (O—sI) and det [ . Obviously, it is a

Moreover, have

Q,= { p(Q,R,S,K); (Q,R,$,K)ER™IxXR™ x R™ 9% R™"  f(Q,R,S,K) =0
By Theorem 1, it is known that there exists (Q°,R°,S°,K°)ER™X
R9** x R™9x R™* such that p(Q°,R°,S°,K°) does not belong to the

above set, it means that £, is a proper subset of R4q+2(m+7).

So 9, is a proper variety in Raz+dr+qmin

Coroliary 1.3, Let the system (2,1) be jointly controllable
and observable. Then there must exist a dynamic compensator
(3,1) such that
(i) the closed—loop system (3,2)is stable, 1. e.

(e oD

where C'~ denotes the left —half open complex plane;
(ii) the compensating spectrum and the closed~loop spectrum

do not intersect, i. e.

A+ BKC BSD _ s,

(@) na([ w o

4, The Decentralized Case

In this section, we come to discuss the intersection problem of
decentralized compensating spectra and closed - loop spectra for the
N —control agent system (2,4). ;

For the system (2,4), we consider the following decentralized

¥



CONTROL THEORY AND APPLICATIONS Vol.4

dynamic compensator

';i=Qizi+Riyi

ui=S:2; + Ky, +v;, 1=1,2,...,N (4,1)
with 2,€ R (1=1,2,-,N).

The spectrum Lj}’ o(Q)) of (4,1) is called the decentralized
Pl

compensating spectrum of (2,4). The order of (4,1) is denoted
by (g1,q5,,qn)- Obviously, the state matrix of the closed ~loop
system composed of (2,4) and (4,1) is

4 A
A+z’,‘vx BK.C, B,S, .. BS,

A= R.C, 0, - 0 (4,2)

\ RyCy 0 = Oy )
Then the closed - loop spectrum is 0(5,
Define a subset P of Nx N as follows,
PAALGL 00,6y i0JENX Ny G,y ily Giyeyifme) =@,
1S5, i<N,s+t=N+1}
where N denotes the power set of (1,2,-.-,N),i.e. the set consisting
of all subsets of (1,2,--,N); and ({y o 1% )is the complementary
set of (iy,,i,) in (1,2,-,N). For Cliyey?) Gy s idJEN X N, we
define 2 centralized control system Sf(ix,'",i.)y(iu'“’fr):’ as

fOlIOWS;

x=Ax+ (B; B;, - B; Ju

y= x (4.3)

S i
With the above Preparation, we now state the following main
result,
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Theorem 2, Given the system (2,4) :’and a positive  integer set
(qys+sqy). Then, there exists a (q1;O-~~,qN)~order deéentral,ized
compensator (4,1) such that the decentralized compensating
spectrum and the closed —loop spectrum do not intersect if and only
if for all C(iys-sis)s(fissjt)JEp the subsystem
SCiyyerrsis) Graoesie)d is not vanishing.

Proof Sufficiency: Assume that the system Sp(i, . i), (j s 576)]

is not vanishing for all £(i,s-5%)s(fys-57)IEP. Then it is easy
to see that neither is the system Spqi ,..,i)), (j;,e,j)3f0T all

C(iyyvyis) sy (fysrai) IEP, where

PP [ ((y e yiads (upaiOIE NX NGy o sifin) N Glyeesifim) =65
1<s5,t<N,s+t>N}

It is desired to construct a (g,,,qy) —order decentralized compen-

sator so that the decentralized compensating spectrum and the

closed —loop spectrum do not intersect.

For this, we {irst take KE€K*, and choose Q; € Ruixai,
(t=1,--,N) so that

(1) O; has no repeated eigenvalue, i. e.,

rank(Qi—sD) =¢gi—1, s€0(Qi)yt=1,-yN

N
@ o4+ 8O n [ Uoon J=¢

() V C(iyyryis)s(friseepie)] ﬂ[ké(ium,is)H(i“---,i,) o0(Q)l=9¢
for all C(iseesis)s(fyssinIEP, where V(i oeyi)y(fryersin)]d
denotes the set of vanishing zeros of the system ,
SCCiyyerytis)s (Grsersin)]d and is empty or finite by the a\bove
assumption. | k

Now we rewrite the closed ~loop state matrix A as follows;

A+BKC 0 -+ 0| 0 -0 B, -+ By

B 0 Q- 0 Iéh e 00 0
A= . + .

{J U oo (21\] v} i[/N Y 0
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/C‘ 0 0 3
R, 0 P :
. C, 0 e 0
o B y
lo O Iql 0
0 S T
! 0 0 IQN
N 2N
=A*+3 BIRCI+ X BISi_,Ct,
i=1 i=N+1

which, clearly, can be regarded as the new closed ~loop state matrix

of a 2N -control agent system S*, ( C¥,A*,B*; i=1,,2N)

under

the decentralized static output feedback (R,,-+-yRysS,,-+,Sy). In

this way, the remaining problem is to find a decentralized static

output feedback for the system S* so that the closed - loop spectrum

N
is disjoint from U 0(Q;) under the feedback. But by Proposition 3,
i=]

it suffices to verify only that the system S* does not contain any

N
element in the set U 0(Q:) as its decentralized fixed mode. Also by
i=]

Proposition 2, the verification is completed if we can show that

the following inequality

rank

‘A+BKC-sT 0+« 0 : 0 - 0 B;,
0 0 0
0 O,=sI - 0 i :
' I.,
. e I.
°e Ta 7ﬁ~t
0 0 o QOy=sIi 0 0 0
Ci, o 0 0
Ci, 0 0
0 0 0
I. .0
i e Iiz(/-.
0 0 0 0

B;

5

0

.
=Zn+ 2 qi
i=]
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i. e.
A+BKC—sI Bj =+ Bj i 0 wooveriiinn 0
Ciz 0 - 0 :
Cj, 0 - 0 0 .. 0
0 0 PQ, ~sI . 0 0 0
. : . 4 < N
rank : : : : : =n+ 2 qi
: : : . I.,°* i=1
. * I.
. 71 e ’]IV_'
0 o Qu=sI 0
Ii; b 0 0
: 0 [;r = 0 0 0
0 0 N-s
‘(4.4)

N —
holds for all s€ U 0(Q:) and (i ,:y7)5(f,s5j1)JENX N. Below,
i=1

we come to check the above inequality.
To begin with, it is easy to see from the conditions satisfied
by (Q,,--,Qy) that the rank of the submatrix in the right-under

. B
corner in (4,4) is at least 3 ¢g;—1 and that of the submatrix in
i=1 .
. B ,
the left—upper corner is at least n for akl s€ U(Q:) and (i ,++y15),
i=m]

(Giswsi)IE Nx N. When C(7,,-5i)s(iys57)IEP’, by the defi-

nition of P’ we obviously have S
(il""’is)U(il""?it):'(l,'“!N)’

which results in the left— upper submatrix in (4,4) being

equivalent to '

§

A-sl Bi o B

it

C7' 0 e 0

i
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In view of the preceding assumption and Condition (3), the above

N
matrix’s rank at least equals n+1 for all s€ J 0(Q;). So in this

i=]

case, (4,4) is true for all SEEI.:VU1 0(Q:). When 1 (i ,-,1,),
(Fysesi))EP, i. e, s+t<N or
(It e YN Gl s fhos) £y
we distinguish the following two cases to consider. ’
In the first case that s+¢<N and (Glyeey ifea YN Glsorsili-e) =9,
that is,
1y st ) UG s =) = 1y ey ND
Ly esithed YN Gy onyiho) =¢

the number of unit matrices in (4,4) is just N, which implies

N
that the right-under corner’s submatrix in (4,4) has rank 2 ¢
i=1

for all s€ ILVJ 0(Qi). Thus, (4,4) holds for all s€ GO(Q;),In the
i=1 i=1 .

second case that (i, ,ifs) N (!, yif-)#¢, it is not hard to

see that the rank of the right —under corner’s submatrix in (4,4)

N
is at least 'Z‘l qi +(qz-0 -1) for all s€ ﬁ 0(Qi), where i,C (i}, ..,
i= i=q
1) N Gls-sif-s). Therefore, (4,4) still holds for all
N
s€ U 0(Q). To sum up, the sufficient part of Theorem 2 is proved.
i=1

Necessity, Assume that there exists ]y sid)y (jUy ey jO)ICP
such that the system SE(:?,'--,1."),(710,-",7?)) is vanishing. Then,
we shall show that

{ f}o(@)] Uo () ¢,

i=1

for all (Qi,Ri,Si,Ki) ERY "4 5 RIVTE 5 gMIXG ( pmiv T (i=1,.

2
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N). Now  because of (il,y,i)U Y, y7))=(1,-,N) and the above

assumption, have

\ 4 LN
(A+BKC~SI Bz’o v Bin A—-SI B'O e B'O
1 s L i
C., 0 0 C., 0 .0
rank A =rank T , <n,
C_0 0 - 0 C., 0 e 0
7t L 14

for all sEC!' and KE K*.
In addition, it is clear from (N-s) +(N—-t)<N and (Y, ifldnN

(72755702, )#¢ that the rank of the right—under corner’s

submatrix in (4,4) with C(f 0,80, (g0, 7)) =000, nyil),

(795 +570)3 is at most 3 gi—1 for all 0:;€RY% X q‘(i=1‘,n-,N) and
i=1

all s€0(Q,), where
kE (1,"',N)/E (2'2’,--. ’i?\!is ) U(i?/y“"ﬁvﬁi)]: <i?9"' ’{I(’)(U(j(l’!""’

7?) In this way, When E(ix’“"is)’(i:y'“’jr)]2{(1.?"""{3:)’(7'?,"'9
7?3, (4,4) may not be true for each (Q:i,K;)ERYT X @iy pMiXTi
(1=1,+,N) and s€0(Qi), 1€ (1], si)) N {s570), whichleades to

U 0(Qy) co(4)
kE(i‘f,--~,fs°)ﬂ(i?s"-si?) : .
for all (QiyR:,Si,K;)ERY “Tix RIVTix RM™ i  RMTi (j=1,...,
N). As a result, the necessary part is concluded and the proof of
Theorem 2 is complete.

Corollary 2,1, If the N—control agent spstem (2,4) is strongly
connected "(cf. (2)), then for any positive integer set (g,,+,qy)
there must exist a (g,,--,qy) —order decentralized 'comperisator
(4,1) such that the decentralized compensating spectkrum and the
closed —loop spectrum do not intersect. ‘

Corollary 2,2, Given the system (2,4)and a positive integer



68

CONTROL THEORY AND APPLICATIONS Vol.

set (gy5+0r5qy). If the system SC(i1,°",is),(i,,"',7':))is vanishing for

some [(i,,4,7,), (Fis*37)IEP, then for arbitrarily designed
(415 5qy) —order decentralized compensator of the form (4,1),

, u (@) o (4),
ICE(Z,,'", )N (ix;"'yil)

Corollary 2,3, Given the system (2,4) and a positive integer

set (g,5°°*»qy). Suppose that the system S¢iy 7y is not vanishing for

all (7,75 ep. Then, the set
Q(qys e am) = {p(O;,R;,Ss,K;;i=1,'~-,N>;<o;,R;,S;,K.->eRq‘“q‘>< R

XRmiXQi % Rm;,XT.' (,‘=1,...’N),[ ﬁlg(o'.) }na"(;f);e¢}

N
o (g? +qivi + qimi + vim;) -
is a proper variety in Ri~! » where A is defined

as in (4,2).
Corollary 2,4, Suppose that the system (2,4) has no unstable

decentralized» fixed modes, and that the subsystem S 7,7, of (2,4)

is not vanishing for each (_z'-,—i-)GP. Then, there must exist a
decentralized dynamic compensator of the form (4,1) such that
the following two conditions are satisfied simultaneously,

(i) the closed ~Ioop system is stable, i. e.,

o(d)cCt-
(ii)the decentralized compensating spectrum and the closed-1loop
spectrum do not intersect, i. e.,

- N
Uo0n ] nocy =,

Remark 1, The application of Corollary 2,3 shows that when
the system S7, 7, is not vanishing for all (i,7) P, compensating

spectra and closed - loop spectra do not intersect for almost all
dynamic compensators of the form (4,1).

Remark 2, If each single channel system (Ci,4,B)) of (2.4) is

not vanishing, then neither is the system S35 ;) for all(Z?}éP.
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