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Absiract

A sufficient condition for decoupling of a linear system by cascade
.ompensator in a unit feedback system is derived under‘ the requirement
hat the decoupled sys’ckem be internally stable, The condition is stated in
erms of a quantity which is directly related to the transfer matrix of; the
yiven system and can be thereiore checked readily,  An FExample is

sresented to illustrate the application ot the result,
1, Introduction

Linear system decoupling by appropriate compensations has
been an extensively investigated problem in the = system theory
literature during past two decades [1-4). An important = issue
associated with decoupling is the necessity to ensure the internal
stability of the decoupled system. In the present Paper, we consider
an unit feedback linear time—invariant system, shown in Fig. 1. A
sufficient condition for the existence of a proper compensator K(s)
is derived such tnat it will both decouple the given system G(s)

-nally stabilize it. If it exists, a procedure  of
ng such a compensator is also given. The main result is
and a numerical example given in Section 2, In the
part of this section, we review some concepts and - facts
il be used in the following section.
¢ be strictly proper and K be proper rational transfer
matrices, which are represenied by coprime polynomial
action descriptions A

G=A7' B, =BA", K=C;'D, =DCH! (1)
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The system in Fig,1 is called internally stable if det (C,A4, +D B3
(or det [4,C,+B, D) has all its roots in C- , the open left  half

the of the complex plane.

Fig.1
Lemma ®° The system in Fig. 1 is internally stable if and only if
(a) Both UBI(s) CT(s)3 and C4.(s) D,(s)) have full rank for

any s€C*, the closed right half of the complex plane

(b) (I+GK)™! has all its poles is C-,

Let P and P* be nonsingular polynomial matrices, P* is said to
be a right strict adjoint of P47 whenever the following conditions

are satisfied; (o) PP* is diagonal; and (b) if P’/ is any polynomial

nonsingular matrix such that PP’ is diagonal, then P* is a4 left
divisor of P’/. A right strict adjoint of a nonsingular P can be

constructed as follows. Let (P™1); be the ith column of Pt oand

let dpc, be the least common denominator of all elements in (P~ Yy,
then P*=p P~ Ydiagla,,;),

2, The Result

Let there be a given liear time —invariant square system with
a mXm strictly proper rational transfer function matrix G.
Consider an unit feedback system, shown in Fig. 1 where K is a
mXm proper rational ransfer function matrix of a compensator. The
transfer matrix of the closed loop system is

H=GK(I +GKY!

G is called wunit feedback decoupleable with internal stability
(UDIS) if there is a K such that I is a nonsingular diagonal
matrix and the closed-loop system is internally stable. It easily
follows that Theorem 1 holds.

Theorem 1 G is UDIS if and only if there is a proper K -such
that GK is diagonal and the condition (@) in the Lemma holds.
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Let dy; be the least common denominator of all elements in
the ith row of G, This implies that G=diag[(l§,-}j'P for some
polynomial matrix P. We now are in a position to prove our main
result.‘

Theorem 2 G is UDIS if (2) houlds

Rank C4,(s) P*()l=m for any s&C* . (2)

where P* is a right strict adjoint of P.
g

Proof Assume that (2) holds. Let a set of polynomials d,,;,
i=1,2,-5 m satisfly the following: (@) diag™'(d,.;J is stabley and (b)
P* diag™'(d,;]) is proper. Obviously such a set of polynomials always
exists. Let K=P* diag™!(d,,;). then K is proper and GK = (diag™*
(d,: ), (PP*) (diag™'(d,.:)) is diagonal. Furthermore with the

coprime fractions (1) and K bei{ng stable, it follows that

 BI(s) CT(s)) has full rank for any s€C*, Since K=D,C! = P*diag™!

(dieid.
[f;:gﬂdkci] ):[ CD'r :}R :

¢

for some polynomial matrix R which has no zero in C*. Thus we

have
4.6 D=t Py [ 0] (3
T AS £,.(8 B 0 R—lv(g) |
" 0 . . '
Becauseg 0 Ri(s) } is nonsingular for any s€C* and,

by assumption, (4, (s) Px(s)J has full rank for any s€C*, then the
left hand side of (3) also has full rank for any s€C*. It follows
from Theorem 1 that G is thus UDIS. ' ‘

It is noted that if the solvability condition is satisfied, a
compensator which solves UDIS can be constructed by the procedure
given in the proof of Theorem 2, In particular with an appropriate
high order of K it is always ‘possible to arbitrarily assign all’ poles’
of the closed~1loop system except for cancellated stable pole- zeros.
This is now a standard problem and will not be further discussed
here.

Example Let G be given as




A Sufficient Condition for Unit Feedback Linear

System Decoupling with Stability No,1

- (i/G-1 0 ]
T LG+ 1/G-2)

Simple calculations yieid ] ‘
_P*:f' (s+1) 0 ‘\9 A’_:{(s—l)(m-l) 0 }

L—(s~2) 1 0 (s=2)
Clearly Rank (A.(s) P*(s)1=2 for any s€C*. By Thecorem 2, G is
UDIs. Iﬂdeed, Let K=P* diagﬂ[d,ec,'] with de;:((Z,‘S'f‘B,‘>9 2.2192,

Then K is proper and _ ,

‘ GK = [-(s-{—1)/(&-—1)(&13-%[)’1) 0 ]

0 1/(s=2)(ays+B,) .
- This implies that the pole at s=~1 of G has been cancellated,
Except for this ome, all other poles can be arbitrarily assigned by

choosing appropriate «; and £,

°

2. Conclusion

A sufficient condition for the existence of a compénsator which
decouples a given system and at the same time internally stabilizes
it has been established employing a polynomial matrix approach. It
is given in terms of a quantity which is directly related to the
transfer matrix of the system, and is readily checked by some CAD

software.

Reference

(13 Wolovich, W, A,, Output Feedback Decoupling, IEEE Trans, Aut,
Control, 20, (1975), 148 — 149,

(23 Pernebo, L,, An Algebraic Theory for Design of Coatrollers for
Linear Multivarizble Systems, IEEE Trans, Aut, Control, 26, (1981),
171 -193, o

(331 Hautus, M, J, and Heyman, M,, Linear Feedback Decoupling—
transfer Function Analysis, IEEE Trans, Aut, Control, 28, (1683),
823 -832,

L4313 Hammer, J, and Khargonekar, P,, Decoupling of Linear Systems by
Dynamic Output Feedback, Math, Systems Theory, 17, (1984), 135~
157,

(52 Anderson, B, D, C, and Gevers, M, R., On Multivariable Pole
Zero Cancellations and The stability of TFeedback Systems, IEEE
Trans, Circuit and Systems, 28, (1981), 830 ~833,



yolib CONTROL THEORY AND APPLICAT TONS 99
c’ * N - oo e i

2R T PR B GRS S AR Y — TR AT AR A

FRE )I]%‘FME M B
TR AT 2, B

B B

KIPET ﬂﬁmm“ﬁi4$mwm&ﬁ&wm%mﬂ&mh,»%wrm5ﬁ
g@//‘fcé}f’*”{‘o % S ?r/93}}\X‘\'J”%‘:f%‘nzfzkﬁli;’(f::l[%z%‘«)J/L”EE{T(#J»&» AT S

AL

B

b CRRGE S P R 2 B R ) — B

(THE METHEMATICAL MODELING OF METABOLIC & ENDOCRINE SYSTEMS
E,Carson, C,Colelli, and L. Finkelstein
john Wiley & Sons, 1983,394p.)

T
CHEFTEBA SR, D

>~»

e S P PN A P N P TN SN P s PPN I T T

s S e e B (R T T A AR HERA FLR PR B R S I R — R
Rz, E¢r+ﬁofnaﬂh A FE T S B R A RN D
NﬁM%WQMH~rbA B W, BRI N A I R PRSIy s, R

SRR AR L B B B R BT AUR B, ISR B A R
vaVmix4mnm,".w%&,? SR, A A T A A R — B R R R AR
W2 e, AT EICBE JEL, AR A B 2 LA S b R B
OINIEN

b N RARMIOE,
BRI — s, BL R

S A IR, OB

Uf T R, SEONEE

i R, AT BRI, SR RRTRAME R
Wi w h$mm’wawl'moﬁr%~Amﬂv
( )ﬁt? 21 !/V}\V‘J AR /J\ 7J {MTJJJJ” ﬂ/‘]/i\}{‘ }:’.J:UI‘.’ 5 ‘{‘

<l J L 4T 8 AR 1Y IR PR 2
‘5:F:fLﬁ%f9\7' LI’XL TERY 4 W’h % J“UE" s

Kbt %ﬂuﬂf’\ n’Jﬂ
Pﬂ & X”"l‘f?"’bﬁ”?






