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Abstract

Based on the analysis of Dynamic Matrix Control which appeared in
seventies, it is found that the algorithm cannot give satisfactory results in
regulation case, Therefore, a new modified algorithm with variable predi-
ctive coefficients is presented, By theoretical analysis and practical appl-
ication, it has been proven that the modified algorithm is correct and
advantageous, Control experiments whicﬁ are carried out in a experimental
thermal equipment in the process control laboratory have shown that the
algorithm is of potential practical value,

Introduction

The Dynamic Matrix Control(DMC) appeared in the end of
sixties or the beginning of seventies. It is a multi—step predictive
algorithm that combines the discrete convolution model and the
least squares method. In the last decade, DMC has attained practical
application in America and France, and got satisfatory results. Alth-
ough it has got fairly good results in some areas of process control,
the DMC control still has a serious disadvantage. The DMC algorithm
can attain stable and rapid response in servo operation system, but
the response in regulation case is often slow. Since regulation oper-
ation is most widely used in chemical and related industris,
the disadvantage as mentioned has hampered the DMC to become
widespread in process control.

Therefore, ‘improvement of the control quality of DMC in regu-

lation case is necessary in the practice of process control.
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Improvement of anven_tiqna! - DMC

1) Development of the algori't}im with predictive corrective
coefficient '

Tt is shown from the dérivation of conventional DMC algorithm
(see referencesl, 2) that the predictive output values /Yk” are Vcot-—k
rected by the term (Y§,,-, - ?,,+if_1). In this situation, there exists
the following relationship; |

c ~ c A o /\‘i
Yoo = Y=Y Gy — Yigjop= =YYy o

That means that all future R predlctlve output values are corrected‘

'

with the same term (Y Y,,) As is well known, the pred1ct1ve er-
rors depend not only on the model errors but on the dxsturbances
The process disturbances change frequently Therefore, it is_ not

reasonable to correct all R pred1ct1ve output values by the same

current error (¥,— Yk). Taking this into consideration, a method
adding predictive corrective coefficient # to .the predictive correction
term is proposed. Then the predictive output values are corrected in
such a manner; o
Yk+; —Yk+,+ﬂ(Yk+] 1 Yk+l-1) ) i=1’2""5R (1)
The Eq (1) can be wr1tten in another ways:
Yk+1'“Yk+J+w(Yk Yk) » 7"1 Z’A’f R (2)

In the followxng, the method that will be used to, der1ve the modi-
f1ed‘D’MC algorithm is the.:isame as that in conventional: DMC., We
finally have got the modified. DMC algorithm (MDMC) as follows:

CAU,=KTE E (s

Where, KT is the first row of matrix (ATA+Q) '4". Q is'a d1agona1
matrix. A is a dynamic matrix;

a, 0 00
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A= | E o =R =12,k ()
a!, a, R/ 1=1
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But here, £ is
(1~a)r,,+’(a-ﬂ')?Yk—
(1-a?)r,+ (a2 —#2)Y,~

(1~a®)r,+ (R~ #2)Y, - Pp
where,
N
Pl"*"‘ylyk‘l“a:"k 2 Bittgei_i 7=1,2,,R (6)
i=j+1 ‘ o o
Comparing Eq. (3) with the counterpart of ‘conventional DMC, it
can be found that they are equal in the form, but are different as
far as the term B is concerned.
2) Analysis of closed——loop control system thh MDMC in both
servo and regulation cases
~ For the control law Eq.(3) further analys:s can be made Subst1—‘
tuting Eq.(5) into Eq.(3) and then taking Z transformatlon, the
transfer functlon of MDMC regulator is obtamed o

. . . . goz _ .
U= 1+c,27 +ey27 2+ ey R(z)+ 1+, 27 4 igyz™ Y(z)
=D, (2)sR(2) + D,(2)*Y(2) (D
where . o o
R T
go1 = ZK (1-a ), o2 = Z“K~(a‘—#') (8)

It is obvious from Eq.(7) that MDMC has different control laws in
servo and regulation cases. This feature is of great advantage for
rejecting the disturbances. That is the main merit of modified DMC:

Let us further analyze the closed—-loop transfer function- of
MDMC in both cases. The control system under study is 'shown in
Fig. 1. The closed —loop transfer function can be obtained from Eq.
(7) and Fig. 1.

Y(2) N
R(z) ~
) g“HGp(Z) o
1+ (g-1+d~wh)z"' +(d, —why)z" % + (de whN_l.)z’N“-—wth“N

(9)
where
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HGp(2) is the Z~transfer function of the process with zero hold.
It is shown from Eq.(8), (10) that g,,, ¢, w, d; are not related with
correction coefficient . Therefore, the closed—loop transfer func—
tion in servo cases does not depend upon K.

Leét Z= 1 in hq (9), we fmally have (ormt the sxmphfymg proce-
dures) '

| Yo/Ru=1 o an

That means that the servo system is in zero offset no matter what
value of # is taken. o v

Let us further consider the closed-loop transfer functioh in
regulation case. Similarly, we can get, »

Y(z) _ 1+(q-—1+d,-—bh,)z“+(d2—bh2)é‘2+-,uvthz‘N :
F(z) 1+(g-1+d, ~why )2 +(dy —why)z™% + - whyz™V

(12)

R
where b= Z K.'lti

Coefficient b is the only one which will be affected by v It
Can further be seen from Eq. (12) that in regulatlon case the value
of # would not affect the locations of closed-loop poles, but does
affect the locations of closed ~loop zeros, so does the transient

behavior of the control system. The hope to improve the control



CONTROL THEORY AND APPLICATIONS Vot,

performance with correction coefficient is mainly based on that.
Similarly, we can study the offset of the closed —loop control system
in the case by letting Z=1. Then Eq. (12) will become:

‘ERlKe(l -4t
gss - (13)
$s R
ZIK.'(l ~a')

The denominator of Eq. (13) is generally not zero because of 0<a<1.
Then different values of # would lead to different results. When
=1, it is obvious from Eq. (13) Y;/F,;=0. That means that there
is no offset in this case. But while #2:1 there will be offset, the

value of which is;

ECEVDS B
Yss:m'—""Fss (14)
S Ki(1-a')

By digital simulation, the experiments of modified DMC with
different values of # for overcoming disturbances have been conducted.
The c_ontrol system simulated is shown, in Fig, 1, where, the process
has G,(s)=¢"2/(25+1),Gi(s) =1/(2s+1). The experimental results and
effects of coefficient # are indicated in Fig. 2. It is known from
Fig. 2 that it is difficult to handle the mentioned contradiction
between offset and yesponse speed if ¥ is taken to be a constant.
To solve it, a modified DMC with variable correction coefficient is
proposed. o ' N -

3) The way of variation of #

. In order to-satisfy the following requirements;
A powerful capacity for rejecting the disturbances

B) no offset for any cases;

C) small undershoot.
the MDMC with, variable # should be adopted. The predictive correc-
tion coefficient ,ﬂ,'will vary in such a way: .

“=1+ A4

and  CAH=AJE| +hysga(E) < | o s)
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Fig, 2 Effect of the Correction Coefficient 4 on the System Response

¢

where E=Y-Y,., _
Ye=—controlled variable, ¥,.,====set point
1 E>0
Ey=14
en(B)= ] 1 E<o

A, >0, 4,>0 are on—line turning parameters
The term A# consists of two parts. the first part 4,{E| is the cor-
rective one for absolute error E. The second part is 4, sgn (E)-z-t-.
It will be larger than zero when the controlled variable ¥ departs
from the set point Y,,, so more powerful control action will be
implemented. In the contrary case, it becomes segative.

Through digital simulation, the authors have studied the re-
sponses of the simulated process by means of MDMC with different
values of 4,,4,. The comparison of the modified algorithm ~with
conventional DMC and PI control for the same process has also been
done. A typical simulation result is shown in Fig. 3, where, Gy(s) =
e 2 /(25+1), Gi(s)=1/(2s+1); the input is unit step change in - the
load. It is apparent from Fig. 3 that MDMC is superior to conven-
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Fig, 3 Effect of the Turning Pardmeter A,, Az on the System Response ]
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Fig, 4 Flow Diagram of Tem“per:atufe Control System in an

Experimental Equipment

tional DMC.and PI control. The values of Ay, A, must be turned on-
line,. ,For the simulated process, A1 =0,06 and 42=0.06 are optimal.

&

Real Tlme Control Investigation of the Algorithm(MDMC) in a
Temperature Experlmental Equipment ‘

The real time control study with MDMC in a temperature exper-
imental equipment has been carried out. (The algorithm  is imple-
mented in a microcomputer with 8'bits 4/D and . D/A converters.) The
flow. diagram of the control system under study is shown .in Fig. 4.
The controlled variable is the temperature T, just at the outlet of a
set, of bending pipes. The control variable is the heat jpput to. . the
water in tank 1, All the instruments used are  of electronic. with

standard signal. The experimental results are shown in Fig. 5, 6 re-
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spectively. It is obvious from the figures that MDMC can - provide
much better responses than conventional DMC and PI control, par-
‘ticularly in regulation case. It is also effective for'largg’ dead time
combpensation. a B
Conclution -

The theoretical analysis, digital simulation and réal-time control
investigation all have proven that modified DMC(MDMCY aIgomthm
‘with variable predictive correction coefficient # is of effective
value in practical application. It is much ‘superior ‘to conventional
DMC and PI control, especially in regulation system. It is also a
good algorithm for compensating large dead time. The MDMC is easy
to be implemented with microcomputer. Therefore, the algorithm
may have potent1a1 value in the appl1cat1on of the process control
field. '
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Fig, 5 Comparison of the Conventional’ DMC w1th the MDMC
" (Response in Heating System) : S ‘ SR
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Fig, 6 Comparison of the Various Control Algorithms in the
Heating System

References

L1y Marchetti, J,L,, Mellichamp, D,A,, Seborg, D,E, Predictive Control



% CONTROL THEORY AND APPLICATIONS  Volus

Based on Discrete Convolution Models, 74th Annual AICHE Meeting,
New Orleans, November,(1981), '

23 Cutler,C.R,, Dynamic Matrix Control - A Computer Control Algorithm
Proceedings JACC, (1980), Paper WP5-B,

(33 Bruijn,P,M, and Verbruggen, H,B,, Model Algorithmic Control Using
Impulse Models, Journal A, 25:2,(1984),69-74, '

€43 Richalet,]., Rault, A,, Testud,J.L, and Papon,J,, Model predictive
Heuristic Control, Applications to Industrial Processes, Automatica,
14:5 (1978 ) ,413 - 428,

(53 Cutler,C.R., Dynamic Matrix Control of Imbalanced Systems, ISA
Trans,, 21:1, (1982), 1-5, ’

TR A

ki BT AR
(REEITRFEHLR T D
¥ =
ﬁiﬁ%%Tﬁ+Eﬁ&ﬂ%%%ﬁ%%%ﬁ%%%%i,ﬁm&%@@%%¥%
%%ﬁ%%fﬁﬁ%ﬁ%,Mﬁ%&?&ﬁﬁ@ﬁ%ﬁ%&ﬁﬁ%.#Eﬁﬁ@%ﬁﬁ

AT P SE T R e TE b AR, 70 i PR ) B2 0 e IR BE B B AT
SER P EIR TR, T XA ELE A BRI S LAY (. |





