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Abstract

This paper is concerned with the des1gn of state feedback law which
possesses integrity against actuator failures. Some sufficient cond:txons
for the existence of such state feedback'law and a numerical example are
givex; in the paper.
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1. Introduction

For some fields requiring high reliable control systems, the
feedback control law should make close loop system stablée even in
the presence of some actuator failures, If a control law satisfy this
requirement, then it is said to possess integrity.

If a plant is-stable, then there exist state feedback control laws
that can preserve the stability of close loop system in the presence
of arbitrary actuator failures (1], Joshi(2] studied the integrity problem
for the case in which the plants may have unstable dynamics, But
the conditions for the existence of control law possessiﬁg integrity
given by him are rigorous, so these conditions have limited uses,

~ This paper investigates the application of Bass’ algorithm of
designing state feedback law to the design of control law possessing
integrity against actuator failures, It is proved that Bass® algorithm
can design a state feedback law that have infinite gain margin for
each input channel. Based on the property, the state feedback law
with integrity can be obtained by adjusting the gain of each input
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channel properly.
2’.‘State' Fe‘edfb‘ag:k Law Possessing Integrity
Consider fh'e-fol’l'oﬁing linear tiine—iﬁvariant mﬁlfeisinput plant
| x=Ax+Bu (D
where, the pair (4, B) is controllable and x€R", uC R,
Take the state feedback law as
u=Kx=-~BP'x 2)
where, P is the symmetric positive definite solution of the following
Lyapunov equation

P(A+8I)’ + (A+pI)P=2BB’ ‘ (3)
and B in(3)is an arbitrary real number greater than - ||4] which

,:bwdl make —(A+BI) asymptotically stable.

Theorem 1 ( Bass’ algorithm(3]) If we apply the state feed-
back law (2) to the plant (1), then the close loop system

x=(A+BEK)x (1)
is asymptotically stable, ‘ ‘

Proof Since the pair (4, B) is controllable, it is easy to see
that (4+8I, B) is also controllable. So the equation (3) has a
unique symmetric positive definite solution P provided that — (A+ 8D
is asymptotically stable, which is guaranteed by the .choice of B,

 Rewriting (3)as

(A-BB’P")P+P(A—-BB’P“)’=—219P (5)

we know from the Lyapunov theorem that (4~BB’P™!) is asympto-
tically stable.
Now let /
u=K’x =diagla,, ,a,)Kx= - diagla,, - a, ) B’ P lx (6)

then the variation range of a; that will preserve the stability of the
following system ' ‘
x=(A+BK’)x (7))
is defined as the gain margin of the ith input channel of (4) (4],
Theorem 2 1f we apply the state feedback law (2 ) to the plant
(1), then the close loop system ( 4) has a gain margin (1,00) for
each input channel, |

Proof By using (5), we have
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P(A - Bdiag(e,,,a,)B’P™1)* + (A~ Bdiag(a,, " ,a,)B’P" )P

=P(4-BB’P"! +Bdiag(1-a,,,1-a,)B’P"')’ + (4~ BB’P"}

. +Bdiag(l~a;,**,1-q,)B’P )P :

=P(A-BB’P"')’ +(4-BB’P~')P+2Bdjag(l~a,,*,1~a,)B*

= —2BP +2Bdjag(1-a,,*,1-a,)B’ C8)
Since P is positive definite, the right hand side of (8)will be negative
definite when ;21 (i=1,-,7r), Hence, ( A~ Bdiag(a,,,a,)B’P )
is asymptotically stable provided that o,=>1(i=1,+ ,r)from the
Lyapunov Theorem, That is, the system ( 4) has at least El co) gain
margin for each input channel,

If we take (6) as state feedback law, - which is equivalent to
inserting a constant gain in each input channel of( 4), then a; can
be taken as the parameters to be adjusted for integrity of close loop
system, Joslu first explained this for LQG state feedback law in €23,
In the following, we will explain that this is also the case for
taking ( 6 ) as state feedback law, . )

Only two states are distinguished = for each actuator in the
following, normal state and failed state. so, there are at most 2"~ 1
failure states for a system having r actuators. In order to represent
the kth actuator failure state, we define

D= diag(dg,, -, dgy)
where,

0 the actuator 7 fails in the kth failure state;‘:'
de = { Lo

1 the actuator i is normal in the kth failure state,
Thus, when the close Idop system (7 )is in the kth failure state, the
real input going into the plant (1) can be expressed as
u=—Didiag(a,, ,a,)B’ P lx= - diag(dxlal,--',dk,a,)B’P“x :
Theorem 3 Take (6 ) as state feedback law, then it has intégrit&'
with respect to the kth failure state if :
- B8P +Bdiag(1-ds,a,,, 1~ dse,) B’ <0 (9D
Proof when the system (7) change from .the normal state to
the kth failure state, its state equation becomes :
%= (4 -Bdiag(d,,a,,,dea,)B’P)x T (10)
Since - o
P(A-Bdijag(dg,a,, sdga,)B’P~1)? + (4 ~ Bd;ag(d“a“ +yd4,e,) B’P~1)P
= —2BP +2Bdiag(1~ds, 0,y 1-dya,)B’
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(10)is asymptotically stable provided that the fight hand side of
the above equation is megative definite, i, e., (9) holds,
1f the pair (4,B) is not completely controllable. then the solu-

tion P of (3) may not be positive definite, Hence the inverse of P

. may not exist,

Assume that the pair (4,B) is stabilizable, So, there exist a
nonsingular matrix T which can transform (1) to the following
form by the transformation x=Tz

2:1 A 0 2, B,
= + u , (11)
2:2 0 A}l 2 B, '

where, A, includes all of the unstable modes of (1) and A, alt of
the stable modes, Thus, the pair (A,, By)is controllable from the
stabilizability of (4, B). Let B’ be an arbitrary real number greater
than |4, which will make - (4, +8°I) asymptotically stable. Hence,

the following Lyapunov equation

Px(-Ax+391)’+(Ax+5’I)P1=ZBlB1’ (12)
will have a unique positive definite solution Py, V
If we take
u=CK, 03] (13)
Z2

as state feedback law, then (11) becomes

21 A1+B1K1 0 Z

(14)

<2

BzKl Az <9

Therefore, the stability of (14) is guaranteed provided that the

subsystem

z=(4,+B,K))z (15)
is asymptotically stable. So, we have the following corollary.
‘Corollary 1; If we take (6) as state feedback law for plant(1 )

except that K= —B’P~! is substituted by K=C—-B,*P;' 0T, then

the close loop system (7) has integrity with respect to the kth
failure state if;
—B’Pl+B,diag(1—d“a,,-'-,l-—dk,a,)B,’<0 (18)
Proof If the condition ( 16) is satisfied for the kth failyre
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state, then the system ( 15) with K, = -diaga,,,a,)B;*P7" will be

stable in this failure state from the theorem 3, So, the system (7) with
K=0[-=B,’P;! 0JT"! has integrity against the kth failure state,
Assume that the indices of the normal and the failed actuators
are 1,, 99, and jy,*,7,-qc4,, respectively and the condition v
' R(bil""’bi('-q(k1)gR(bil’"'9biq(k)) 1)
is satisfied in the kth failure state, where R(+) denotes the range
space of a matrix, b',~ represents the ith column of B and 4(k) the
number of failed actuator in the kth failure state, Then there exist
a matrix S, with ¢(k) rows and (r-gq(k)) columns such that (b,l,
bir-qcx,) can be expressed as ‘
Birseabicoaiir)) = (bigye iq(k)Sh)
In this case, we have ' ' '
B dijag(1-d;,a;,+-,1~dse,)B?
= (b1, b;q(k))dlag(l Aiyyeer ,1 a.q(k>)(b.u . biq(k))’
+(bi1’ ' b:(r-q(k>))(b112" bi(yv—q{k)))
:(bil’"'!biq(k)){diag(l"du‘x;;",l"‘:aiq(k))+ShSh,}(bi19"'9b«‘q(k))’<0
| SR (18)
provided that ;=14 4ax(SiS2) (i=1,, «yigcs,), Where, duax(e) fepre*
sents the largest eigenvalue of a matrix, Thus, we have the following
theorem, |
Theorem 4 If the condition (17) is satisfied for the kth
failure state, then the state feedback law ( 6) has integrity against
this failure state provided that «; (i'=‘i1;---,iq(k>) is sufficiently
large, '
Proof If the condmon (17 ) is satisfied for the kth {failure
state and @; (i=1d;,+,4,,,,) are suffxc1ent1y large, then ‘( 18) will
hold. So, the feedback law (6) has integrity agamst this failure
state from the theorem 3,
Generally speaking, it is difficult for a failure state to satisfy
the condition (17 ). But using the corollary (1) we can get a
condition easy to satisfy in the following corollary.
Corollary 2, Suppose the condition ~
R(bxin'"9blf('—q<k>>)C—:-R(bu1"""b1iq<k>') (19)
is satified, where, b,;denotes the ith column of B,, Then the state

feedback law (6) with K=C(-B,°P;! oJ7-! possess integrity with
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respect to the kth failure state provided that «; (=11, sigk)) 1S
sufficiently large.

Proof If the cond1t10n(19)1s satisfied, then from the theorem
4 we have

—B’P +B,diag(1l- dkla,, ey 1=dpa,)B, " <0 ,,
‘ provxded that @; (i=1,,siqs,) i (6)are sufficiently large, So,
(6) possess integrity with respect to the kth failure state from
he corollary 1.

" Generally, the number of the unstable modes of a plant is very
small compared with the order of the plant in many practical
situations. So, the dimension of b,; is much smaller than that of b;.
Thus, the condition (19) may be satisfied even though (17 ) does
not hold for the kth failure state,

From the proving process of the corollary 2, we can see that
if we let every a; be sufficiently large regardless of the state of
failures, then the state feedback law (6) with K=(-B, P;'0)T!
will possess integrity against all of the failure states that satisfy
(19 y. Thus, we hé.ve the following theorem,

Theorem 5 There exist state feedback laws that have integrity
agaj"ns»t\»arbitrayry‘~f‘a,i1ure states satisfying (19).

8, Example

Con51der a double effect pilot plant evaporator ES] Assume

that the dynamics of the evaporator are represented by a fifthorder

system,
.| o0 0.0 ~0.0034 0.0 0,0 ||
x| lo.0 —o0.041 0.0013 0.0 0.0 || 2
2 0=l 0.0 0.0 ~1.1471 0.0 0.0 X4
X, 0,0 0,0 -0,0036 0,0 0,0 X,
xg| 10,0 0,094 0.0057 0.0 -0,0511| x5
-1,0 0.0 0.0
0.0 0.0 0.0 |lu,
+| 0,0 0.0 0,948 |u, , (20)
0,916 —=1,0 0,0 |lu,
-0,6 0,0 0,0
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where, the variable x,+,x; are all measurable, The open loop
poles are{0,0,0,0, - 1,146, -0,041, - 0,051}, So, the open loop system
is not asymptotically stable, Examihing the B in (20), we can see
‘that the condition (17 ) can not be satisfied for any failure state,

Now, we transform ( 20 ) into the following form,

2.:1 0,0 ‘ ‘ | 2,
.;2 0,0 Zy |
2 |= ~nue ||
2l | o —0.041 || 2,
24 -0,51] | z,

-1,0 0.0 =0,0028
0.92 -1,0 =0,0029 ||, | PR

#[ 0.0 0.0 09417 || u - (21)
0.0 0,0 0,001 ]

-0.6 0,0 -0,0057

So, we have
lo o

-1,0 0.0 -0,0028
o o

0,92 -1,0 =0,0029

It is easy to see that (19) is satisfied for an}? “single actuator

1:

failures, So, there ex1st state feedback laws which have integrity
against any single actuator failures by the theorem 5, This is "also
the best result we can expect since the plant ( 20 ) is not stabilizable
under any other actuator failure states.
Now, we take f’=0,1, Solving (12) and using (13), we get
9.,999784e~2 -1,519918¢-6
K,=]9,199572¢~2 9.999701e~-2
7.837625e~4  5,475794e—4
When we take (6 ) with K=(K, 0JT"! as state feedback law for
(20), the real part of the close loop poles in normal and failure
conditions are all negative ( see Table 1.). So, we have obtained a
state feedback law possessing integrity against any s1ngle actuator
failures without adjusting «;
Next, we make some varxation for a;:0, =100,a, =100, @, = 10000,

the correspondmg real part of the close loop poles are hs‘ced in
Table 2,
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Table 1 Real part of close loop poles
normal state -~1,000000e-1 —9,999999¢e~2 —1,146 —-0,041' -0,51
actuator 1 fails - 7,897615e -7 —9,999999¢e~ 2 - 1'14,6 -0,041 -0,51
actuator 2 fails ~1,000000e—1 ~—2,987593e-6 —1,146 -0,041 ~—0,51
actuator 3 fails -9,999623e~2 -1,000000e -1 -1,146 -0,041 -0,51
Table 2 Real part of close loop poles
normal state -10,0374500 -10,000000 -1,146 -0,041 -0.,51
actuator 1 fails’ -7.816315e~-3 -10,0297100 -1,146 -0,041 -0.,51
actuator 2 fails ‘ -10,00779 ~9,996212e -2 —1,146 -0,041 ~-0,51
actuator 3 fails -9,999623 —-10,000000 ~1,146 -0,041 ~0,51

From Table 2, we can sec that the ( ) still has integrity when
we enlarge a;. This is fully pretictable from the theorem 2 and 5.
It can also be seen that the degree of stability of the close . loop
system has been improved, .

From the example, we can see that the degree ofv stability of
the close loop system (7)can be man»ipulatéd by «;, So, we can
adjust @; for the degree of stability of close loop system and for
integrity. ’

4, Conclusion

A simple method for: designing state feedback laws that have
integrity against actuator failures is proposed in this paper. The
main computational work this method involved is solving the
Lyapunov equation, So, the method is a computationally Sémple one,
In the method, the gain to be determined has a close relation with
a; or B, therefore, trade-off between gain and degree of stability
or integrity of close loop system can be made easily, The example
given in the paper illustrated the effectiveness of the method
proposed,
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