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Abstract

The major work of this paper is the introduction of the concept
of the lowest degree polynomial matrix as a tool to study the unique-
ness of the simgular systems satisfying the same input-output data,
and the extension of the previous identification algorithm to sin-
gular multivariable systems, ‘
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1. Input output Desciptions of Multivariable Singular Systems

Consider the singular system of the form

Ex(k+1) =Ax(k) + Bu(k) (1.1a)
y(k) =Cx(k) (1,1b)
with det(zE-4)=0 (1,1c)

where E, A are nxn matrices, B, C are nxm, pxn matrices, respec-
tively, ‘
It is well known that singular system (1, 1) is restrict system

equivalent (r, s, e.) to the following decomposed system '’

x(k+ 1) = Alxl(k)+Bxu(k) (1.2a)
E xz(k+1)~x2(k)+Bzu(k) (1.2b)
y(k) = =C,x, (k) +C, x, (k) (1,2¢c)

where A, is 1,1 matrix, E, is mn,xm, nilpotent matrix, others are
approprlate dimensional matrices, 1y +1, =17,

Note that E, is nilpotent, then the transfer function matrix of
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singular system (1,2) Calso system (1,1) )can be expressed as
G(z)=C(E-A)"'B=G,(2) +W(z) (1,3a)
where ' , b
G,(2)=C,(zI-A,)"'B, ; (1.3b)
is strictly proper fraction matrix, -
W (z) =C,(zE, — )" B, =Co (I +2E, + *+ +2"* EZZ)B,
=W,y +2W,+-+2°W, (1,3¢)
is polynomial matrix where v is the largest nonnegative integer such
that C,E3B;+0 if W(z)aeo
(2] has shown that for observable matrix pair (C,,A ), there
exist unique two polynomial matrxces P(z)efl’”[z) and Q(z) g Frxm
[2] such that ' ' '
C,(zI—Al)“B,=P“(z)Q(z') - (1.4a)
where P(z)and Q(z) 'have canonical structures as follows

P(z) = (p:i(2))

Dii (Z):Z’/i"ﬁ‘- Zv'ijl-'"—?,-;,l 1\<\i<13

N — Vii_]- - V,‘j"z e X . . .. .
pii(2) = pif,tli,‘ 4 pif, V;i”lz Diiss 1$7,1<1s7<P
Q(2) = (g;;(2))

S (2) = C ity 2 kg, 1<i<p,1<j<m
q;i qiv.,} qi'l/ -1,7 Gi1ei SISy, lsIsm
v;;=v,,v;; =min(y; + 1,v;) for j<i, v,,—mm(v,,v;) for 1=t (1,4b)

Substitute ( 1,4), (1,3c) into (1,32), we obtain input- output descr-
iption of singular system ( 1,2) with (C,,4,) observable as follows
P(z)y(k) = R(z)ulk) oo - (1,5a)
where R(2) =P(z)W (2) + Q(z) can be written in the form
R(z) = (r;;(2)) ‘ - '
v, +v v

r;i(z)=r; Lz h

+v-1
+r. .
w,+v+1ly7 rzvi+v,;

Fedri,i (1.5b)

where when W(z) =0, v is defined as —1.

2, Lowest Degree Polynomial Matrix of N Input Data

For given N data {u(k) €R", k=1,2,",N}, obviously, there exist

a nonzero polynomial matrix F(z)&F?*"(2] such that -
F(2)u(ky =0, for all k=1,2,+,N-1 | (2.1)
where I=degF(z), p is positive integer. Let S(F) denote the set “of

all nonzero polynomial matrices F(z) such that (2,1) holds,
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Definition 2,1 ¢ Let Fy(z) be one of the lowest degree polyno-
mial matrix in S(F), Fy(z) is called the lowest degree polynomial
matrix of N input data {u(k)cR", k=1,2, N}, ’ '

Let ,

u(1),u(2), u(N—-r* 1

u(2),u(3), v u(N=-r+2)

UT(r) = (2.2)

u(r),u(r+ 1), ,u(N)

Theorem 2,1 If j is the least positive integer such that matrix
UT(j) is not row full rank, then degFy(2) =71—1.,

Proof Let F(z)=F0+Flz+--~Fi_,z“1, then F(x)u(k)=0 for all
k=1,2, -oN-i+1if and only if (Fo,FyyyFioUT@) =0, If the
condition of Theorem 2.1 is satisfied, obviously, j is the least positive
integer such that” equation(Fo,Fl,'",F,»_,)UT(i) =0 exists nonzero'
solutions, This implies that degFN(z)=i— 1,

Let two singular systems P;(z)y(k) =R, (Duk),i=1,2, which need
not to be assumed to have canonical structures, satisfy the same
input-output data {y(k)ER",k=1,2,"',N;; u(k)@R"',k:l,Z,'",N} and
the lowest degree polynomial matrix of {u(k),k:l,z,-",N} is Fy(2).

Theorem 2.2 If degFy(2) is greater than max(degP,(z)+deng(z),
deng(z)+degR,(2)), then the two singular systems Pi(z)y(k)=R,;(z)

u(k), i=1,2, are equivalent in the sense of polynomial matrices
description, i, e, Pt (z)Rl(z)=P§‘(z)R2(z),

Proof According to the result in (3), there exist two poly-
nomial matrices fI;i(z)GFP*?[z], i=1,2, such that
degAll’,-(z) =degP;(2), det?,.(z) =detP (), 1= 1,2,1;:(z)P2(z)
_ 5. ()P, (2) Obviously, we can deduce the following formula

B (DR P2 @R, @) =0, for all k=1,2,77 Nt

where *'-”-'deg(/l\;l(z)Rz(z)"'?z(Z)R;(Z)), 1f the two singular systems
P,»(Z)y(k)=R;(z)u(k), i=1,2, are not equivalet, then it can be

proved that P,(2)R. (2) —~ P,(2)R,(z) is nonzero polynomial matrix,
This is a contrary to the degree of Fn(z),

3. Extensive Structural and Parametric identification Algorithm

In this sectiom, it is always assumed that we can give the
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estimative values of n>max(1/ ) and =y before identification and
the degFy(2) of input date {u(k), zgk k+1,,k+N- 1} is larger

than 2;z—+1;—, Therefore, by Theorem 2,2, this implies that we can
identify the structural indices and numerical parameters for the
following subsystem(3,1) instead of for the i-th subsystem of (1,5a)
and must lead to r;1,; being zero for all I>v;+v+1,

m n"’”“‘l

y(k+v )= 2 2 p,,,,y,(k+l—-1)+ 2 12 f;!iiul(k+l"1) (3.1)

j=1 I=1
Let the 1nput—output data {y(z),u(z),z=1 2,°} be arranged as

Yk )= Cylk+7), yik+i+1), ,yT(k+7+N 1)), 1<isP,0<j

wl(k+i)= Ik +7), wl(k+i+1), ,uT<k+1+N ), 1Si<p,0si
(3.2)
Equation ( 3,1) shows that the vector g, (k+v,) is a linear com-
binatién of vectors ;/-j(k+l-1)(1_<7’<p,1<1<v,-;) and ;,-(k+l—-1)
(1<7<m, 1<l<n+v+1) N

Denote with L,(y) and L; (u ) the vectors of (3. 3) defmed as

follows
Li(y) = k), gk+1), =y gik+i)) (3.3a)
LCa = Gy, wke1), oy wkEi) (3.3b)
Also denote with R(8,,0,,",0,,n) the matrix defined by
R@1st8pm =Ly (40)ss Ly )y Ly, (uadyory Ly (i)} (304)
and with 8(8,,,8,,n) the matrix deflned by ’ .
881,82, Bpum) = R385, By )R8, Bay s8p0m) (3.5)
Construct ndﬁv the sequence of symmtrical increasing-dimension
matrices gwen by '
8(1,0,* ,() NV, ), S(1,1,: ’o,n—+; D), e,
e e \-\,—-/ —
P m b m
S(L, 1,00, 1, m 40, m ), 8(2,1, 00, 1,1+ v,y ok 0)

—~— L —— RN e (39@)

t
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and select, in the sequence (3.6), the singular matrix in the con-
sidered sequence and let u; be the index increased by one with respect
to the previous (nonsingular) matrix, then if follows that v;=4#:

vi;=y;—1(7'=;&i,i<7’<p), Therefore, when a singular matrix is found,
one of the indices is determined; the procedure ends, all structural
indices are determined exvept v.

Define the vector of parameters for all i=1,2,p

8..=(p; T A Ve U p, e B 'y
i = (Pits s ™% Pz“vl . :P.pn, ,Pzp,Vp: i1

- - Ve Vg e - —
Tind v+i,1 ) :r"""’ Tin+ v+'1,1,m) (3.7)
and, for simplicity of nontation, let

RC;*’:-R‘(VH,"-,V“-1,'--,1/“,,;+ 7,-~,72+17) (3,82)
SG,.=S<v“,-~-,v,.i—1,---,vip,";i+?,---,"n+17> (3.8b)

then the parameters estimation gg; of the i-th subsystem are
,éG;:S(?eI Rgi;i(k+vi) - (3,8¢)

Notice that, by Theorem 2. 9, the numerical parameters riisj
(i>v,+v+1) of §Gi must be zero for all 4,7 (A<i<p,1<ism), Then

yv=max{max(I-v;|rini= 0,k=1

ru, i+ 0,k<l,for all 1<j<m) -2, -1} (3.9)

4 ,Conclusion

The concept of the lowest degree polynomial matrix play an im-

portant role in this paper. By the concept, Wwe give a sufficient

condition which guarantees the linear independence of the extensive

identification algorithm proposed in section 3,
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