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Abstract

~
In discrete time adaptive control problems the following equation has

come up
[ mbw () Quw (k) A" bwT (k) '
k - - k
e(k+1) A 1+ mpwT(B)Qu (k) 1+ mpwF(R)Qu (k) () (15
) Qu (kAT - pw ) QuT (k) R
k+ - = k
\¢( D L1+ mpw T (RF)Qu (k) ! 1+ mpwT(R)Quw (k) 3\45( )

Where, p+hAT(Jz~ A)"'b is a strictly positive real transfer fuaction, w(k)
is the function of e(k) and $(k). The stability analysis of the system is pre-
sented in this paper. It is concluded that if w(k) is sufficienly rich, the
system is exponentially stable.
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1. Introduion

In 1977, Morgan and Narendra''’ presented their remarkable paper

on the stability analysis of a nonautonomous differential equationa‘; =
CA+B(t)) x with a skew symmetric matrix B(), In 1680, Bitmead
and Anderson"?’ gave an exponential stability proof for a discrete
time-varying free linear system x(k+ 1) =F (I x(k). In most discrete
adaptive control problems, the error system described by ekquation
(1) is nonlinear in nature therefore, the above results can mnot be
directly applicable for discrete adaptive control system analysis,

- This paper presents an exponential stability proof for the system
described by equation (1) which actually is ihe éounterpart of
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Morgan and Narendra’s results in discrete time case,
In Narendra’s discrete time model reference adaptive control

(MRAC) scheme the following equations were derived!?’

e(k+1) = Ae(k) +bv(k), 2)
e, (k) =hTe(k) + pv(k), (3)
v(k) =¢T(k)w(k) - mwT(k)Ow(k)e, (k), m=>1/2 (4)
Pk +1) =¢(k) — Qe (K)w(k), Q=0T>0 (5)

It is not difficult to bring above equations to equation (1),
For convenience of discussion the set of difference equations (2)—(5)
is investigated, If the system described by this set of equations is

exponentially stable, so is the system described by equation(l).
2, Stability Analysis

From the discrete version of Kalman-Yacubovich lemma, if p+
RT(Iz— A)7'b is strictly positive real then there exists a matrix P=
PT>0 and a vector q such that

ATPA—P= —qq"—¢L,
ATPb =h/2 +rg,
p~bTPb=r?,
for some L=LT>0 and scalars >0, r>0, _
Choose a Lyapunov function candidate V (k)
V(k) =2eT(k)Pe(k) + ¢T(k)Q™ ' ¢ (k)

Then the forward difference of the Lyapunov function candidate

along the trajectory of equations (2)—(5) can be written as
AV(k) =V(k+1)=-V (k) = —20eT(k)q—rv(k)I* — 2eeT(k) Le(k)

+ (1-2m)wT(k)QuwT (k) Qu(k)e? (k) (6)

It is seen that AV(k) is negative semidefinite, i, e,, the Lyapunov
function V(k) is a nonincreasing function of time, Hence the system
is stable and e(k) and ¢(k) are bounded if e(0) and ¢(0) are bounded,
Furthermore it follows that

e(k)y-—>03 ¢ (k)04 e, (k)—>o0, as k—>oco, »

In adaptive control problems the elements of vector w(k) are the
filtered signals of the e(k) and é(k), therefore w(k) is also uniformly
bounded, The aforementioned stability results could bé found in ref,

3. Then we start with introducing a definition of sufficent richnmess
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of a vector signal.

Definition 1 A bounded n-vector input sequence {u(k)} is said
to be sufficiently rich if there exists an integer I, and g,. such that
for any given time instant k,>k,, for any constant nonzero n-vec-
tor d there is a time instant k eCk,, k, +1,) such that

|dTu(Ry|=e¢, (7)

Next we shall present two lemmas which are necessary for ob-
taining the exponential stability conclusion for system(2)-—(5).

Lemma 1 Consider a system described by equations (2)—(5), let
5>0, €, >0 be given, Suppose the transfer function p+hT (Jz—A4)7'b
is strictly positive real, w(k) is uniformly bounded and sufficiently
rich and xT=(e”, ¢7) is a solution of this system with |x(k)| <e,,
Assume there is an integer I such that [p(k) =6 for all ke Ck,,k, +
I3, then there exists a ke (k,, k, +I3 and ¢>0 such that Je(k,) |[=e,

Proof 1) From (3) one has

e (k) —hTe(k)

v(k) = (8)

Eliminating »(k) in (2) yields

e(k+1) = (A-bhT/p)e(k) +be (k) /p 9
It follows from (9) that '
l6/plille, (kY 1| = llboe, () /pl|< lleCk+ 1) [+ A~ bhT/p ||{lek) |

or

les CYII<ClleCk+ 1) ||+ 14— Bh7/p e (k> 3/ 16/ (10)
Thus, if leck)||<<e, “keCk,, k, +13 (11)
one has le, (k) |<Be, Nkelk,, k, +I-1) (12)

where, £ is a positive constant, An inequality comes from (5)
. J-1 :
ok, +7) = p(k ) < |IQ Iz ey Chy + ) [[fwk, +9) |

LAnax{Q}w,Ife Aye, WII (13)
Where y is a positive constant, w, is the maximun value of llw (k) ||
which exists because of the boundedness of w(k). :
2) An inequality follows from (2) and (4)
lleCk+1) [[Zbp"(kKdw (k) ||~ |mbwT(k)Qw(k)e, (k) ~ Ae(k) || (14)
Now, we shall outline how to prove lemma 1. First, we make an
assumption that| e(k)||<<e for all keCk,,k, +IJ and calculate three terms
in the right hand side of inequality (14), The result will lead to a
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contradiction to the assumption. Then the lemma holds,
Let e’ =ey/20|blw, and I=1,+1 (15)

From (13) and (11) there is a corresponding value # such that
if
fle (k) II<0, ke Cky, k, +1D
then, [d(k, +]) -k |<e’, WI<]I

Where, ¢f and I, arise from the sufficient richness condition on
w(k), i,e,, there is a ke(k,,k, +1,) such that
[6dTw () [ =116 || [dTw (k) = [b e, ae - (16
Now define an unit vector d =¢(k,)/l ¢¢k,) |, one has
I"bﬂdT!W‘(’fl) =T (k) Jw k) || = [bLT(ky ) = ¢TCh) Jw (k) |
<lblwne’ = 8eg/2, Vhkelk,, k, +13

or [6dT [Tk )y faw k) = bpTyw k) || <8ef/2
lp (k) odTwiky || = BT (kyw (k) || <8el/2
(6T kyw k) |=>8eq— Se4/2 = 8e4/2 for some keCk,, k, +I3  (17)

Choose e=min {8e;/8, 8¢} /8m [b| dnax{Q}w2B, 0}. It follows from (11)
and (12) that
(|mba™ (k) Quw (k) — Ae (k) ||<< [mbuwT (k) Qu(kye, (k) | + [lAe k) |
<m b | dnan {QYw? Be + e<<Sef/4, NheCk,, k, +1-13 (18)
It should be pointed out that here we suppose |4]<1. For|4|>1, by
replacing 8e{/8 as 8¢}/8]A| in the expression of € the same conclu-
sion could be obtained, Substuting (17) and (18) into (14) yields
le Ck+1)||> 8e7/2 ~ 8ef/4=38e;/4>€  for some kECk,, k, +1,)

This is contradictive to the assumption made before, therefore,
the lemma follows, Actually this lemma says that if ¢(k) is - per-
manently large then e(k) is periodically large, v

Lemma 2 Consider a system described by equations (2)—(5).
Let 6>0 and ¢,>0 be given, Suppose p+k " (Iz—A)"'b is a strictly po-

sitive real transfer function, w(k) is uniformly bounded and suffi-
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ciently rich and xT=Ce”, ¢T3 is a solution of this system with |x(k,) |

<¢, . Then there exists an integer I=1(e ,8) and some k,elk bk, +1)
=05, 1
cuch than [lp k), [<<6.

Proof From equation (), one has

AV (R = =20eT(R) g=rv () )2~ 2ee” (k) Le (k) + (1~ 2m) w” (k) Qur (k) e} (k)

< - 26Aai{L} e (®) |? (19)
Let €,>6,>0, if [x(k)) ||<e,, le®) |>e,, then it follows from (19)

V (k) =2¢eT (k) Pe (k) + ¢T (k) Q¢ (k) <B|x (k) ||* <Pe? >k,
for some positive constant B, Thus one has an inequality
VYAV () || <Bet/ 26 Aain {L} €2 (20D

This inequality implies that there is an uniform limit on the
amount of time, a solution x(k), starting inside the ¢,-ball and |le (k) |
can remain outside the ¢,-ball. This also implies that given ¢,>¢,>0,
there is a T>0 such that if x(k) is a solution of the system with
lxk)|<e,, then, there is a k,eCk,, k, + T such that [ek,)|| <e,. The
conclusion can then be obtained that e (k) tends to zero, By the above
comments and lemma 1, let >0, then |¢(k) |=8 implies that there
is an €>0 such that [e(®)] is repeatedly both less than e/2 and gre-

ater than e if we choose ¢, =¢, ¢, =¢/2, This eventually leads to a

contradiction with the above comments. Since all these results are

uniform, we conclude that |¢ (k) [|<6 repeatedly. .
Theorem Consider a system described by equations (2)—(5) If

p+ET(Iz—A)"'b is a strictly positive real transfer function, w(k) is
uniformly bounded and sufficiently rich, then the system is expone- |
ntially stable in the large, ‘ , |

Proof Form a Lyapunov function candidate N ‘ |

V (k) =2€e"(k) Pe (k) +¢T () O ¢ (k) (21)
with g

cie" (k) e (k) <2eT (k) Pe (k) <c,eT (k) e (k) (22) |

csdT (k) p (k) <PT k) O™ ¢ (k) < T (k) ¢ (k) (23)

Where, ¢,, ¢,, ¢; and ¢, are positive constants, Now, we shall show
that given &,>¢,>0, there is a 6 with 1>0>0 and an integer M>0
such that if e, <V (k) <e,, % keCk,, k, +MJ then there is a kye Cky,
k, +MJ such that Viky) <OV (k) ’




CONTROL THEORY AND APPLICATIONS Vol,8

Frem Lemma 2 there is a k,e (k,, k, +I3 such that [[¢(k,) <8
for a given 6>0. It turns out that

V(iy) =2eT(k,) Pelk,) +¢T k)07 (k) <c, |e(k,) ]1"-+c 5? (24)
Let 8= \/c,e,. It follows from (24) that

letk,) 2= (1= cie)V k) /e, (25)
From (6), one has
Vk,) -V (k,+1) =20eT(k,) g—rv(k,))? +2¢eeT (k,) Le(k,)
+2(m=0,5)w" (k) Ow(ky) et (ky)

=2edain{L} A ~cc)viky,)/c,
This leads to
Vi, + 1) <(1-2edau{Ll} (1= c,c0) /e, IV (ky)

It is always possible to choose ¢,>0 such that 0<1—2eimi {L} (1 -
c,60)/c, <1, Let ky=k,+1 and 6 =1~ 2€Ani {L} (1—c,cy)/c;, It turns
out that V (k,) <OV (k,) <OV (k) ‘

Inequality (26) implies that quadratic Lyapunov function V (k) is
exponentially convergent to zero, However exponential convergence
of V(k) is a necessary and sufficient condition for exponential sta-

bility of the system when matrices P and Q are positive definite,

8. Conclusion

The exponential stability of Narendra’s discrete adaptive control
system described by equations (2)—(5) is proved under certain as-
sumptions, The conclusion is useful to analyse the robustness of Na-
rendra’s discrete adaptive control systems when those systems are
corrupted by external disturbances, measurement noise and model-

ling errors,
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