A New Algorithm for Constructing Internal Skew Prime Polynomial Matrices

Wang Qingguo, Sun Youxian, Zhou Chunhui
(Department of Chemical Engineering, Zhejiang University, Hangzhou)

Abstract

A new algorithm is presented for constructing an internally skew prime pair of polynomial matrices from a given pair of polynomial matrices and its effectiveness is illustrated by an example.

Butto be traff 12 And Swot the 1. Introduction man all well but mercont we

Consider any $(p \times p)$ polynomial matrix D(s) and $(p \times m)$ polynomial matrix N(s). If D(s) is nonsingular, then D(s) and N(s) are called externally skew prime [1] if and only if there exsists a pair of polynomial matrices, $\overline{N}(s)$ and $\overline{D}(s)$, of dimensions $p \times m$ and $m \times m$, such that

$$D(s)N(s) = \overline{N}(s)\overline{D}(s) \tag{1}$$

with D(s) and $\overline{N}(s)$ relatively left prime and N(s) and $\overline{D}(s)$ relatively right prime. In that cace, $\overline{D}(s)$ and $\overline{N}(s)$ are called internally skew prime (1). The primary objective of this note is to present a new algorithm for constructing such an internal skew prime $\overline{D}(s)$ and $\overline{N}(s)$. It is now well known (2)-(4) that the problem considered is crucial for regulator synthesis of a linear multivariable system. The main result is developed in Section 2 and an example is also given to illustrate the result.

2. The Result 9 to 2 ground with add finds

Assume that a $(p \times p)$ polynomial matrix D and a $(p \times m)$ polynomial matrix N are given with D nonsingular and N of full row rank.

Further assume that $\sigma(D)$ and $\sigma(N)$ are distinct, i.e. $\sigma(D) \cap \sigma(N) = \phi$. where $\sigma(N)$ denotes the set of all c such that N(c) is of rank defect.

Lemma 1 If D and N satisfy assumptions described above, then D and N are externally skew prime.

Proof: This lemma follows from Lemma 6 in (3). Its proof is strainghtforward and, is omitted here.

It is well known that a polynomial matrix is equivalent to its Smith form by elementary operations (5). For D and N we have

is usual and the state
$$D = L_1 S_1 R_1$$
 which is the state $D = L_2 S_1 R_1$

$$N = L_2 S_2 R_2 \tag{3}$$

$$DN = L_3 S_3 R_3 \tag{4}$$

where S_i , i = 1,2,3, are in the Smith forms, and L_i and R_i , i = 1,2,3, are unimodular. we now are ready to state and establish the following.

Theorem 1 If D is nonsingular, N of full row rank, and $\sigma(D) \cap \sigma(N) = \phi$, then D and N are skew-prime, and \overline{D} and \overline{N} , defined by

$$\overline{D} = \text{Block diag}\{S_1, I\}R_3 \tag{5}$$

$$\overline{N} = L_3 S_2 \tag{6}$$

are internally skew prime, where I is dentity matrix of order (m-p).

In view of Lemma 1, we only need to prove that \overline{D} and \overline{N} are internally skew prime. In order to do this, we need the following first.

Lemma 2 If D is nonsingular, N of full row rank, and $\sigma(D) \cap \sigma(N) = \phi$, then the Smith form of DN is the product of those of D and N.

Proof: From (2) and (3), $DN = L_1(S_1R_1L_2S_2)R_2$, the Smith form of DN is the same as $S_1R_1L_2S_2$ because L_1 and R_2 are unimodular. It is therefore sufficient to prove that the Smith form of S_1MS_2 is S_1S_2 , where M is unimodular. Let $Q = S_1MS_2$, and denote by d_{1k} , d_{2k} , and d_{3k} the determinatal divisors of order k of S_1 , S_2 and Q, respectively. A determinantal divisor of order k of a polynomial matrix is the greatest common divisor of all its minors of order k. we know that the Smith form S of Q is

$$S = \begin{pmatrix} \lambda_{31} & & & & \\ & \lambda_{32} & & & \\ & 0 & & & \\ & & & & \lambda_{3p} & \end{pmatrix}$$

where $\lambda_{3i} = d_{3i}d_{3i-1}^{-1}$, $i = 1, 2, \dots, p$, and $d_{30} = 1$. Similar statements can be applied to S_1 and S_2 . Set $Q = S_1Q_1$, where $Q_1 = MS_2$, applying the Binet-Cauchy formula (5), we can express a minor of Q of order k as a linear combination of minors of S_1 of the same order. It therefore follows that

$$d_{3k}d_{1k}^{-1} = p_{1k} \qquad k = 1, 2, \dots, p, \tag{7}$$

where p_{1k} is polynomial. This also means that d_{1k} is a divisor of d_{3k} . In a similar way, by setting $Q = Q_2S_2$ where $Q_2 = S_1M$, one can show

$$d_{3h}d_{2h}^{-1} = p_{2h}, \qquad k = 1, 2, \dots, p$$
 (8)

where p_{2k} is a polynomial. For a fixed k, partition M into $[M_k: M_{p-k}]$, where M_k is the first k columns of M. It can be noted that $g_k m_k d_{2k}$ is a minor of order k of Q, where m_k is any minor of order k of M_k and g_k is the product of the corresponding diagonal elements of S_1 to m_k . The greatest common divisor of all m_k must be a nonzero real constant, otherwise Laplance expansion of the determinant would show that M were not unimodular. Therefore the greatest common divisor of all $g_k m_k d_{2k}$ can be expressed as $G_{1k} d_{2k}$ where G_{1k} is a polynomial and $\sigma(G_{1k}) \subset \sigma(S_1) = \sigma(D)$. By the definition of d_{3k} , we have

$$G_{1k}d_{2k}d_{3k}^{-1} = \overline{p}_{2k}, \qquad k = 1, 2, \dots, p$$
 (9)

where p_{2k} is a polynomial, similarly one may show

$$G_{2h}d_{1k}d_{3h}^{-1} = \overline{p}_{1h}, \qquad k = 1, 2, \dots, p$$
 (10)

where G_{2h} and \overline{p}_{1h} are polynomials and $\sigma(G_{2h}) \subset \sigma(S_2) = \sigma(N)$. Farctorize d_{3h} into $d_{3k} = d_{3h}^+$ d_{3h}^- where $\sigma(d_{3h}^+) \subset \sigma(D)$ and $\sigma(d_{3h}^-) \subset \sigma(N)$, then we see that (7) and (10) are satisfied simultaneously if and only if both d_{3h}^+ d_{1h}^{-1} and d_{1h} $(d_{3h}^+)^{-1}$ are polynomials. we thus have $d_{3h}^+ = d_{1h}$. Similarly, we also have $d_{3h}^- = d_{2h}$. In view of these relations, we obtain

$$\lambda_{3k} = d_{3k}(d_{3,k-1})^{-1} = d_{3k}^{+}(d_{2,k-1}^{+})^{-1}d_{3k}^{-}(d_{3,k-1}^{-})^{-1}$$

$$= (d_{1k}d_{1,k-1}^{-1})(d_{2k}d_{2,k-1}^{-1})$$

$$= \lambda_{1k}\lambda_{2k}$$

The proof is thus completed.

Now we can prove Theorem 1.

From Lemma 2, $DN = L_3S_3R_3 = L_3S_1S_2R_3$ for some unimodular matrices L_3 and R_3 . Set $\overline{D} = \operatorname{Block}$ diag $\{S_1,I\}R_3$, then $\det(\overline{D}) = a_1 \det(S_1)$ = $a_2 \det(D)$ with a_1 and a_2 being nonzero real numbers, Since $DN\overline{D}^{-1} = L_3S_2 = \overline{N}$, a polynomial matrix, then $DN = \overline{ND}$. Furthermore, D and \overline{N} must be left coprime because otherwise there is a nonunimodular common divisor Q such that $\sigma(Q) \subset \sigma(D)$ and $\sigma(Q) \subset \sigma(\overline{N}) = \sigma(S_2) = \sigma(N)$, which contradicts the fact that $\sigma(D) \cap \sigma(N) = \phi$. In a similar way, one can shows that \overline{D} and N are right prime. The proof is thus completed.

Remark The above contruction of \overline{D} and \overline{N} is essentially different from those given by wolovich (1) and Chen and Pearson (3) who considered the problem of determining the solution X and Y of the equation

$$N(s)X(s)+Y(s)D(s)=I$$

for skew prime N and D.

We next consider an example[1]. Suppose that

$$D(s) = \begin{bmatrix} 1 & 0 \\ -1 & s+1 \end{bmatrix}, N(s) = \begin{bmatrix} 1 & 1 \\ 0 & s \end{bmatrix}$$

 $\sigma(D) \cap \sigma(N)$ is clearly empty and by Lemma 1, D and N are externallo skew prime. Furthermore, it follows from some simple calculations that

$$D(s) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & s+1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} := L_1 S_1 R_1$$

$$N(s) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & s \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} := L_2 S_2 R_2$$

and

$$D(s)N(s) = \begin{bmatrix} 1 & 0 \\ -1 & s+1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & s \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & s^2 + s - 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & s^2 + s \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} := L_3 S_3 R_3$$

As shown in Lemma 2, we see that

$$S_3 = S_1 S_2$$

By the Theorem, we obain

$$\overline{D}(s) = S_1 R_3 = \begin{pmatrix} 1 & 0 \\ 0 & s+1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & s+1 \end{pmatrix}$$

$$\overline{N}(s) = L_3 S_2 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & s \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & s \end{pmatrix}$$

which are internally skew prime.

3. Conclusion

A new algorithm has been presented for constructing an internally skew prime pair of polynomial matrices.

References

- (1) W.A.Wolovich, Skew prime polynomial matrices, IEEE Trans. Automat. Contr., Vol.AC-23, (1978), 880-887.
- (2) W.A. Wolovich and P. Ferreira, Output regulation and traching in linear multivariable system, IEEE Trans. Automat. Contr., Vol. AC-24, (1979), 460-465.
- [3] L.Chen and J.B.Pearson, Frequency domain synthesis of multivaria able linear regulators , IEEE Trans. Automat. Contr., Vol. AC-23, (1978), 3-15.
 - (4) Q.G.Wang, Modelling and Control of Multivariable Systems: New Results and Applications. Ph.D. Thesis, Zhejiang University, (1987).
 - (5] F.R.Gantmacher, Theory of Matrices, Vol.I, New York: Chelsea,

式中核宜关和最重要处理的一CL。作对上来证据。P.C.Yonue提出了美数估量证据通过

一个构造ISP多项式矩阵的新算法

三

本文给出了一个构造ISP(Internally Skew Prime)多项式矩阵的新算法,例子 说明了算法的应用。