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Abstract

In this short paper we show that, in the identification of some
varying coefficients of diffiusion equation, the functional derivative

formula given by Ref., 1-2 is not correct in L, space,

1. Problem Formulation

We consider a system governed by
div(K(x)gradQ) = S(x)Q} + U (x ,1), ¥€G, te(0, T)

(K(x)gradQ,N) =C(x)(0,-Q),  xEBG,t€(0,T ) 2

Oz, 0)=g(x), rEG,
where G is a regular boynded open domain with a piecewise smooth
boundary in R", BG is the boundary of G, N is the unit normal to
BG outward from G, (, ) is the symbol of inner prodyct in R".

In practice, K means conductivity (in heat transfer systems ) ,
transmissivity (in ground water systems) or diffusivity (in diffysion
systems). In many cases, K only depends on mediums, i. e, it is
only a function of x and obviously it may be discontinuoys. When
K(x) is discontinyous the projection of vector KgradQ on any
normal to the discontinuous syrface myst be contin.uOus. This requi-
rement comes from physics and the mathematical definition of this
generalized solution shown in Ref. 2. We denote the class involving
all piecewise continuous functions with finite boynded smooth pieces

by C,. The practical problem is how to choose K(x) € C, such that

1

;=_J ,th' (@(x,1) ~0*(x,1)) *dx = min , (1,2)
2J7, G,

Manuscript received Mar, 12, 1986, revised July 12, 1987,



Suppl.l.1 A Note on the Identification of Distributed Parameter Systems 107

where T, and G, are some subsets of (0, T) and G respectively, !

and Q* is a given function which means some observation values.
Prof. J. H. Seinfeld and W, H, Chen showed, in Ref. 1, that

the Frechet derivative operator of ] with respect to K(x) € L, can

be expressed as
5/=f:r1 dtJGl 4K (gradP,gradQ)dx, 1y%)

where P(x,t) is governed by
div(K(x)gradP) + S(x )P, =Q- Q*, x€G, t€(0,T)

(K (x)gradP,N) + C(x)P =0, % €BG,t €(0,T ) (1)
P(x,T)=0, xE€G,
In Ref.1 they assume G,=G and T,=(0,T), but the observation
values are hardly known on the whole (0,7) and G in practice. We
will show now that the (1.3) and (1.4) are wrong as K(x) is in L,

2. The Difference of Variational Formulas

First of all, as K(x) is a smooth function (1.1) has a classical
solution Q(x,t). If we take the norm of C' space, it is easy to get
the above variational formla, Let P(x,t) be some undetermined
function, For any K(x) €C' and its associated state Q(x,?), we

always have
1 (7
J=— ] @] (@-0m7+ Pdiv(Kgrad 0) - 501~ 1)ar, (2.1)
0
Now let K+ AKEC! and Q+ AQ bhe its associated state, then
T 1
AT = [ dtJ- (AQ(@-0") + 5 AQ* +P(div(AKgradQ + Kgrad AQ
0 G
+ AKgrad AQ) -SAQY))dx
Using the known formula for any vector A and scalar F, that
I (A,gradF)dx=I ' (FA,N)dx*J FdivAdx (2,2)
G BG 6
and the boundary condition and initial condition of AQ, that

(Kgrad AQ + A KgradQ + AKgradAQ,N)+CAQ:=O, x € BG, t€(0,1)) foa
AQ(x,0) =0, X E€G, § 2.3

we have
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A= - J-:dt L (AK(gradP+gradQ) + AQ(div(KgradP) + P} +Q - Q%)
L %AQZ +(AKgrad AQ,gradP))dx — {TdtJB A.Q(CP+K(gradP,N))dx
(1] G

+[ (PAQ)rix,
G
Let P(x, t) satisfy (1,4), we have
AT= J gdtj oA K(gradP,gradQ)dx J Tdt L((AKgradAQ,gradP)

+-;—A02)dx, ‘ (2,4)
Because Q is classical, as |AK|c,—>0, it is not hard to show
J:dtL(AKgradAQ,gradP)dx=o(uAKnm), (2.5)
T
| atf a0rax=0ciaKlcy), (2.6)
Then from (2,4) it implies that the linear operator of AK
o= [ &t AK(gradP,grad0ya, (2.7)

is a Frechet derivative operator of ] mapping C' into R'. This
result can be generalized into the case of KEC space. As K(x) s
discontinyous, according to the definition of generalized solution
all the above calculus holds. but if we take the norm of I, space
the left hand side of (2,5) can be the same order quantity as (2,7)
when IIAKIIL2 —>0, For example, consider a steady system with omne

dimensijon,
d 1 By NN
 (£3) =0 rea,
» (2,8)
0(0)=1, -;l’?x::Z:l.

Let K(x) =1, x€(0,2), then Q(x)=x+1 is the associated state. we
make a variation as
1, x& (0, 1-¢),
K+ AK= 31+r, x&El-e¢, 1),
1, x€(, 2),
then
x+1, x€(0, 1-¢)
Q+AQ= ; I+ ' (x=-1+e)+2-¢, xE(1=¢,1)
x+1-(1+71) tre, xc(l, 2)
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is the unique solution #n space H!, where >0 is a constant.

Let the functional is given as
= [;(Q ~1)%dx

then P(x) satisfies

—‘L(i—i) =Q(x)-1=x

dx x?
e i, e. P(x) :—6_ - 2x,
P(0) =0, Tl =0
dx |y =2
We have
(0002 Yae [ o)t
J' (A dP dAQ _Il- (__2)(1_1;_1)(1]6:_17:-6?1"'_:2"—_9_

(2,10)

Since r is constant, as e—>0

I 1
||AK||L =0 [ l_ rPdx) P = re P =0,
» 1-e

But (2.9) and (2,10) are the same order quantities as e—=>0, So we
can not regard (2,7) as the Frechet derivative operator of ] mapping
L, into R!. This example also shows that in L, space linear terms
of variation should not be rashly regarded as first variation. The
variation formula suitable to this example is given by principle of
pulse variation (Ref. 3).
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