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Abstract; In this paper, we suggest a method to obtain the values of hedging points for a multi-part-type production sys-

tem by using the genetic algorithms. We establish a genetic algorithm model for hedging point policy and show that the results of

the genetic algorithms can reflect the properties of hedging point policy accurately.
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1 Introduction

Consider the problem of a stochastic manufacturing
system containing one machine that produces N com-
modity types must meet the demand at a minimum cost.
The stochastic nature is due to the machine failure.

The problem belongs to the field of flowshop with
failure-prone machines. Kimema and Gershwin''! have
showed that the optimal control for such a system has a
specific structure called the hedging point policy. In
such a policy, a nonnegative surplus of products called
hedging point must be guided as quickly as possible and
is maintained after reached to hedge against future capac-
ity shortages caused by machine failures. The focus of
the policy is to solve the value of the hedging points.
Unfortunately , no analytic solution for it can be obtained
except for the one-part-type one-machine system[2:| be-
cause of mathematics difficulties. Although there are a

few papers[3] which have considered multiple-part sys-

tems and proposed some ways to solve the problem, it is
difficult to use those solution when you deal with a more
than two part-type system.

In this paper, we first apply the genetic algorithms
to this field. The most advantage of the method is that
the complexity will not increase as the dimensions (the
number of part-type) of a system increase.

The remainder of this paper is organized as fol-
lows. Section 2 describes the problem we aim to solve.
Section 3 studies the application of GAs, runs the GAs
program and analyzes the results. Section 4 deduces
conclusion from the previous section.

2 The problem
2.1 A multi-part-type one-machine system and
hedging point policy
2.1.1 The model of dynamic programming
a) State variables, control variables and parame-

ters.
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The continuous state variables;
X(t): (x(e),%0(2),**, %,(t))—part surplus.
The discrete state variables:

a(t): The state of machine—a finite-state ho-
mogeneous Markov process, the state
set; {0, 1}, “1”"—functional, “0”—re-
paired.

The control variables :

UCt)s Cui(e),uy(e), o ,u,(t)) —the produc-
tion rates.
The parameters:

D:(dy,dy, ", d,) —the demand rate of part.

b) The state equation and the constraint condition.

The state equation:

d(X(s))
T = U(t) - D, (1)
The constraint condition;
Zr,-ui < alt), (2)
i=1
ui(t) = 09 = 17“.’n- (3)
¢) The objective function.
J(Xya’t) =
T
ming{ | g(X(s))ds 1 X(1) = X,a(0) = o},
(4)

where, g(X(s)) is a penalizing function.
2.1.2 The structure of optimal production rate
Gershwin¥! proposes the structure of an optimal
control policy. Note that the constraint of U is a polyhe-
dron. The optimal policy divides the state space into a
set of areas and in each area the production rate is con-
stant. The boundaries of each area intersect at one point,
called hedging point, and the running trend of system
should be toward the point. Finally the system will
Mmaintain at the point after reaching it. The activity of

the system can be expressed as Fig. 1.
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Fig. | The state space of a two-part-type system
Because we usually suppose that production rates
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are far higher than machine state change rates, the sys-
tem will be at the hedging point in most period of func-
tional state. The division of the state space determines
the way to reach the hedging point. But in practice, we
do not implement the policy in the way shown in Fig. 1
because of complexity. We just operate the system to
run toward the hedging point by making it work at its
full capacity. Therefore, the most important problem we
are concemed with is the value of the hedging point.
3 Application of GAs
3.1 The idea

In the above discussion, we show that the structure
of hedging point policy is very distinct and the focus is
the solution of hedging points. The optimal policy will
be almost achieved if the hedging point is obtained.

After the hedging point is obtained, we implement
the optimal policy in practice as follows: We choose the
part type, whose difference between its surplus and
hedging point is the biggest, to produce when the ma-
chine is idle. Stimulated by this way and the distinct
structure of hedging point policy, we propose to apply
the GAs to this field. If the regions in which the values
of the hedging points is inside can be estimated, we
could choose the initial values of the hedging points in
the regions randomly. By simulating the way imple-
mented in practice, the value function according to the
hedging point chosen can be calculated. Then the evalu-
ating value, called “fitness” in GAs, can be gotten by
the transition of value function. Therefore, we can seek
the optimal value of the hedging point by GAs. The fo-
cus of this method is how to determine the fitness so as
to reflect the properties of the value function.
3.2 The model of GAs
3.2.1 The parameters of production system

In order to obtain the optimal policy for the produc-
tion system, the following parameters must be given:

a) Failure rate and repair rate of the machine

PsT.
b) Demand rate for each part type
di, i = 1,2, ,n.
¢) Processing time for each part type (unit time)
T =1Ll

d) Penalizing coefficients for each part type.
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C?: the surplus is positive, Cj: the surplus is
negative (backlog) .

Remark In this paper, we only consider the sit-
uation that the functional state of the machine is feasi-
ble. So the parameters of the model must satisfy:

2idi < (5)

The inequality (5) implies that the capacity of the

machine is powerful enough to meet the demand. If the

capacity of machine can not satisfy the inequality (5),
we called it infeasible state in which the machine must
always produces in its maximal capacity and we usually
think that the hedging point is infinity.

3.2.2 Representation

We denote the coordinates of the hedging point as
Z;, i = 1,2,--,n. Each coordinate is represented by a
float point number and called a gene in GA’s literature.
The hedging point is a vector Z; and represents as:

(21,23, 12,). (6)

The expression (6) is called chromosome in GAs.
Our goal is to seek the optimal value of the chromo-
some.

3.2.3 The expression of the fitness value

How to determine the expression of the fitness val-
ue is the focus of the application of GAs. In the model
established in 2.1.1, we suppose that the time region of
the machine up and down belongs to exponential distri-
butions. Then, the transition of machine state is homo-
geneous Markov process. Since the objective value func-
tion is the expectation of an integral expression, we can
not use the value function as the fitness value directly.
To calculate the fitness value, we use several approxi-
mation ways as follows:

i) Indicate the time region of the up and down of
the machine as average number. Suppose that the failure
rate is p and the repair rate is 7. Thus, the expectation
of those time region are 1/p and 1/7.

ii) Suppose the sum of a range of up time and a
range of down time, which is 1/p + 1/¥, as a running
cycle of the machine and as a time scale calculating the
fitness value. The time scale is divided into M intervals,
as shown in the Fig.2.

iii) Suppose the capacity of the machine can make
the surplus of each part type reach its hedging point dur-

ing the up region. By denoting the moment when the

machine breakdown as ¢y and the surplus of part type i in

e — I
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Fig. 2 The time scale for calculation of fitness
t; moment as x;, we have
X0 = Zi »

(7)

where the u; denotes the production rate of part type ¢ in

Xy = Xi(j-1) + dt x (ui(j_l) - di)v

t; moment, which must satisfy:

Z Tuy < 1. (8)
i=1

As the up state comes up, we must decide the part
type whose difference between its surplus and hedging
point is the biggest, and then produce it as maximal pro-
duction rate. For example, supposing the part type m is
chosen, we have u,; = 1/t,, and meanwhile the produc-
tion rates of other part types are zero. Then, we must
calculate the difference at every point t;. Whenever the
difference of another part type, for example, part type
n, is bigger than the part type m, the production rate of
m will reduce to d,, and the remainder of machine capac-
ity will be given to the part type n,u,; = (1 -
Tndn )/ T,. Analogize as above until the surplus of each
part type rise to the hedging point, then their production
rates will be equal to the demand rates. The idea of the
method is based on the basic rule of hedging point poli-
¢y, which points out that the system should operate to-
ward the hedging point as quickly as possible, then keep
at the point until the down state comes up. This method

can be illuslrated by Fig.3 for a two part type system.
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Fig. 3 The description of the method to determine the
production rate and the corresponding track of state

iv) Calculate the expression below with the results
obtained in iii)
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m-1 n

> 2 (Cixt + Cing), (9)

j=0 i=1
where 2} = max{O,xij} Xy = max |0, — xu} The goal
of optimization is to make expression (9) minimum.
But, it can not be used as fitness value function since
the GAs need the fitness value as the maximum form.
Therefore, we make the transition

m—1 n
M- 232 (Clx} + Cixni), (10)

j=0 i=1
where M represents the maximal value of expression (9)

obtained so far.
3.2.4 Determine the region of the hedging
points

The region where the hedging points will be sought
must be decided before the GAs can be implemented.
According to the idea of hedging point policy, we can
see that the lower boundary is zero. To decide the upper
boundary, we think that the surplus level will reduce at
the speed of d; in the down state. So the minimum part
storage to prevent the surplus level from dropping below

the zero during down state is d; % Therefore the region

of the hedging points is
1
O’ di 4. 11
[0, 4] (i)

3.2.5 Program of the GAs

We program the GAs software by modifying the ba-
sic program frame offered in the appendix in [S]. The
fundamental rules we used are described as follows:

i) Standard proportional selection.

ii) Arithmetical crossover!®! .

iii) Non-uniform mutation’®’

iv) Elitist rule.
3.3 The experiment, results and analysis
3.3.1 Parameters setting and stop rule

Parameters

Population scope: N = 100;

Number of generation: M = 5000;

Probability of selection; p, = 0.5;

Probability of crossover: p, = 0.8;

Probability of mutation; p, = 0.2.

Stop rule;

Stop whean the mth reproduction have finished.
3.3.2 The results and explanation

We apply the GAs to a three-part-type one-machine

system so as to show the efficiency of the method. We
will see that the results of GAs can reflect the fundamen-
tal properties of the hedging point policy accurately.

a) Zero-inventory control policy.

We operate the GAs for three examples with differ-
ent parameters and get the results in Table 1.

We can see from the table that the Hedging Points
in the three examples are zero or can be approximated by
zero. In contrast to these results, we usually think that
positive inventories are used as a buffer against uncer-
tainties. Thus, zero-inventory level can only be optimal
when there is no uncertainty at all, and that is never
possible. But, in[7], a condition in which a zero-in-
ventory policy is actually provably optimal even when
there is uncertainty given for one-part-type, one-ma-
chine system. They show that the zero-inventory is opti-
mal when the parameters of a system satisfy .

Kp(C*+ C™)
c* (K-d)(r+p) S

1. (12)

Table 1 The result 1 of the GAs
parameters part type part type part type parameters
of part 1 2 3 of machine
d 1 1 1 p=0.
T 0.1 0.1 0.1 05
Example 1 cr 2 r=0
C- 8 8 8 5
HP Z 0.00 0.00 0.00
d 3 7 5 p=0
T 0.01 0.03 0.07 1
Example 2 c* 4 4 4 r=0.
C- 5 5 5 5
HP Zz 0.03 0.05 0.01
d 1 1 1 p=0.
T 0.1 0.15 0.05 1
Example 3 c* 2.5 2.5 2.5 r=0.
Cc- 7.5 7.5 7.5 5

HP Z 0.05 0.02 0.04

In Equation (12), K denote the maximum produc-
tion rate. This inequality happens whenever r is ade-
quately reduce or p is increased to the full,i.e., when-
ever the system is made effcient. Obviously this situation
should be suitable for the multi-part-type system. We
deal with the parameters of the multiple-part-type system

as follows:



d:i‘,di, K=—1—
=)

( Zl Ti;;n)
S
i=1

€
Ct=+ R e
n n

Replacing parameters in left side of (12) by the
four expressions, intuitively the inequality is modified
by expressing the condition in which the zero-inventory
policy is optimal for a multiple-part-type system. The
left side of (12) for the specified parameters of the three
examples in Table 1 is 0.65,0.884,0.95 respectively.
So we can expect that the zero-inventory policy is opti-
mal for those cases. The results of GAs have proved our
hypothesis.

b) Effects of change of parameters.

In the following examples, we take Example 1 as a
reference model and change the specified parameters in
other examples in order to show that the GAs can reflect
the properties of hedging point policy when some param-
eters are changed. We make 5 experiments and the re-
sults are showed in Table 2.

Table 2 The result 2 of GAs

parameters part type part type part type parameters

of part 1 2 3 of machine
d 2.5 2.5 2.5 p=0.15
T 0.1 0.1 0.1 r=0.8
Example 1 G 2 2 2
Cc- 8 8 8
HP Zz 1.93 2.02 1.93
d 2.5 2.5 2.5 p=0.1
T 0.1 0.1 0.1 r=0.8
Example 2 ct 2 2 2
Cc- 8 8 8
HP 7z 0.28 0.24 0.28
d 2.5 2.5 2.5 p=0.15
T 0.1 0.1 0.1 r=0.8
Example 3 ct 4 2 2
c- 6 8 8
HP Zz 0905 1.86 1.91
d 2.5 255 1 p=0.15
T 0.1 0.1 0.1 r=0.8
Example 4 ([ 2 2 2
(3 8 8 8

HP 7z 0.98 1.10 0.58
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d 2.5 2.5 2.5 p=0.15

T 0.1 0.3 0.1 r=0.8
Example 5 (G 2 2 2
C- 8 8 8

Hp z 3.01 3.10 3.05

The boldfaces in the table as well as the hedging points
mean the parameters changed with respect to Example 1.
We explain the consequences as follows:

i) Influences of the parameters of the machine.

In Example 2, we reduce the failure rate to 0.1,
thus, the hedging points of three part types decrease ob-
viously . The reason is that inventory level should drop as
long as the reliability of the machine is enhanced.

ii) Influences of the penalizing coefficients.

In Example 3, we change the penalizing coefficient
of the first part type by increasing C* and decreasing
C~ . The results show that hedging point of first part is
smaller than the others. The result is coincident with our
hypothesis.

iii) Influences of demand rate.

In Example 4, we reduce the demand rate of the
third part type and the results show the corresponding
hedging point also decreases.

iv) Influences of the part processing time.

In Example 5, we increase the processing time of
the second part type. In contradiction with our hypothe-
sis that the corresponding hedging point should increase
because the capacity of the machine for this part is low,
the hedging points of the second part types are not dif-
ferent from other types obviously. We can explain the
results as below: as mentioned in Section 3.1, when we
decide which part type should be produced we think the
difference of the part type between its surplus and hedg-
ing point is the biggest. The longer process time the
higher chosen probability. So the actual production rates
of the part rypes with longer process region are not lower
than others. Therefore the corresponding hedging points
is not higher.

4 Conclusion

In this paper, we apply GAs to get the approxima-
tion solution of hedging points for a multi-part-type one-
machine system since the analytic results can not be
achieved. The advantage of the method is that the com-



No.6

plexity will not increase when the dimension of a system
increase except the longer time of calculation. The disad-
vantage is that the way can only be used in one-machine
system. How to expand it to multi-machine system is one

of our future concems with the field under discussion.
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