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Pseudo Separate-Bias Estimation of Nonlinear
Systems with Colored Noise *
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Abstract; This paper presents a separate-bias estimation algorithm for a class of nonlinear time-varying stochastic systems

with colored noise, the bias may be nonlinear, random and time-varying with some unknown changing law. Compared with the

state augmentation technique for the state and parameter estimation of a class of nonlinear systems, the proposed algorithm is

greatly improved in the real-time tracking ability.
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1 Introduction

State augmentation technique is usually adopted to
estimate parameters and states of nonlinear systems by
the use of the extended Kalman filter (EKF). Unfortu-
nately, the EKF has been proved to be only valid for
time-invariant parameters, and generally the parameter
estimates have constant bias. In a recent work!!] , a
strong tracking filter (STF) is proposed and it can pro-
vide state and consistent parameter estimation of a class
of nonlinear systems with colored noise, wherein state
augmentation technique is also adopted, and the parame-
ters can be randomly time-varying with unknown chang-
ing law.

Since Friedland'®! proposed the famous separate-bias
estimation algorithm for linear systems with time-invari-
ant bias, dozens of papers have been published on the
subject for the extension of this technique to other classes

of linear or nonlinear systems[3"5]

. More recently, an
extension of the Friedland’ s separate-bias algorithm to
randomly time-varying bias of a class of nonlinear sys-

tems is reported in [6], where the nonlinear systems are

time-varying with zero-mean, Gaussian white noise.

The aim of this paper is to give an equivalent sepa-
rate-bias estimation algorithm of the STF algorithm pro-
posed in [ 1] so as to make the STF algorithm more prac-
tical and easy to be implemented. Since the colored pro-
cess noise can be transformed into white noise by adopt-
ing the state augmentation method, only colored mea-
surement noise is considered in this paper.

The present work is based on the former work in
[(6]. The difference between [6] and the present paper
is that two further extensions have been carried out in the
latter. First, the system considered in this paper is a
nonlinear time-varying stochastic system with none zero-
mean colored noise, while in paper [6] only zero-mean,
Gaussian white noise was considered. Second, the bias
in this paper is a real nonlinearity entering the process
and the measurement equation.

2 Problem formulation

A class of nonlinear time-varying stochastic systems

I are described by the following model:
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w(k+1) =f(x (k) b(k),u(k), )+ (x(k), k)v(k),

(1)
y(k+1)=h(x(k+ 1),6(k+ 1), k+1)+ e(k+ 1), (2)
e(k+1) = F(k+1,k)e(k)+G(k+1,k)ECK), (3)

where state x € R"; bias b € R?; input u € R?; output
y € R™; f, h are nonlinear functions, and are assumed
to have continuous derivative with respect to the state x
and the bias b. The process noise v € R’ is a Gaussian
white noise; e € R™ is a colored measurement noise; &
€ R’ is a Gaussian white noise. The following statistics
are assumed to be known:

Ev(k) = m,(k); varlo(k)} = Q(k),
{E&(k) = me(k); varl§(k)} = S(k).
x(0) is a Gaussian white noise with the statistics

Ex(0) = xg; var{x(0)} = Py. (5)
x(0),v(k) and £(k) are mutually statistically in-
dependent. The matrices I'(+), F(+) and G(-) have
proper dimensions. We assume that the bias b (k) is un-

(4)

known, it may be nonlinear (with respect to time) , ran-
dom and time-varying and also system ] have some
model uncertainties .

The present objective is to obtain the pseudo sepa-
rate-bias estimation algorithm of system | (2,61 In the
sequel, we introduce a lemma, which will be used in
the next section.

Consider the following dynamic system ][] ;

x(k+1) = A (E)x(k) + By(k)b(k) +

t1(k) + I'1(k) vy (k), (6)
y(k+1) = Hi(k+1) x(k+1) + Dy (k+1)b(k+1) +
z1(k +1) + e(k +1), (7)

where x, b, y are defined the same as in system I ; A4,
By, I'y, H;, D; are matrices with proper dimensions;
t; and z; are known vectors. The process noise v; € IR
is a Gaussian white noise; e; € R™ is the measurement
Gaussian white noise; v,(k) and e, (k) are correlated,
and have the following statistics;

Evy (k)= my, (k) covio (k)0 (j) | = Qi (k) oy ;,

Eey(k)=m, (k), covle (k) e ()| =R (k)

coviv (k) e () = §:(k)dy,;.

(8)
Lemma 2.1"7)  With a matrix defined by
Ji(k) = Ty(k) S (k)R7 (k)

system [I can be equivalently transformed to be:
x(k+1)= A7 x(k)+By (k) b(k)+ey (k)+vi (k),

(9)
y(k+1) = Hi (k+1) 2 (k+1)+ Dy (k+1) b(k+1) +
2 (k+1)+ e/ (k+1), (10)
where
Al (k) = A(k) - Ji(k)H((k), (11)
By (k) = Bi(k) - Ji(k)D\(k), (12)

0 (k) = 0,(k) + I(k)m, (k) + Ji(k) -
[y(k) = 2, (k) - m, ()], (13)
v (k) = T1(E)[vy (k) = m, (k)] -
Ji(B)Ler(k) - m, ()], (14)
2 (k+1) =z1(k+1)+mel(k+1), (15)
e (k+1) = ei(k+1) - m, (k+1).

(16)
Now, v, and e," are uncorrelated, zero-mean,

Gaussian white noise, i.e.

Evi (k) = 0, (17)
Ee (k) = 0, (18)
covivy (k),vy () =

(D (k) Qi (K)TT (k) -

LR TR 185 = Q1 (k) 8,5, (19)
covie (k), e ()i = Ri(k)dy,;, (20)
coviv (k),ef (DI = 0. (21)

3 Main results

Expanding f(+) into Taylor series at the state and
bias filtering estimates x(k | k) and b(k | k), and
only retaining the linear terms, (1) is transformed into:
x(k+1)=ACk)x(k)+B(k)b(k)+t(k)+I(k)ov(k),

(2)
with
A(k) = If(x(k),b(k),ulk),k)
Ix FODRIODY
(23)
B(k) = Ux(B), bk, u(k), k) |
) b s, scam”

(24)

t(k) = flx(k 1 k),6(k1 k), u(k), k) -
AR x(k 1 k) - B(EYB(k t k),  (25)
P(k) = T(x(k | k), k). (26)



Similarly (2) is transformed into:
y(k+1) =Hk + Da(k + 1) + D(k + 1)
b(k+1) + d(k+1) + e(k+1),
(27)
with
H(k +1) =

Qh(x(k+1),b(k+1), u(k+1), k+1) ‘
dx

D RIGD
(28)
D(k +1) =
A (w(k+1),bCh+ 1), u(k+l), k+1) |
db B BGE
(29)
d(k+1) = h(x(k 1 E),b(k 1 k), k+1) -
H(k + Dx(k | k) -
Dk + 1)b(k 1 k). (30)
Define an auxiliary output as:

2(k) gk + 1) - F(k + 1,k)y(k), (1)
and set up a rough bias equation as;
b(k +1) = b(k). (32)
Substitute (27) into (31), and with the aid of (3),
(22) and (32), it yields:
2(k) = ' (x(k),b(k) k) + e (k), (33)

with
R (x(k),b(k), k) =
H* (B)x(k) + D*(k)b(k) + d”* (k), (34)
H* (k) = H(k + 1DA(E) = F(k + 1, k)H(E),
(35)
D (k) =H(k+1)B(k)-F(k+1,k)D(k)+D(k+1),
(36)
d* (k)= H(k+1) t(k)+d(k+1)-F(k+1,k)d(k),
(37)
e* (k) =H(k+1)T(E)v(k)+GC(k+1,k)E(k),
(38)

From (38) and (4) we have;
Ee* (k) = H(k + NI (k)m, (k) +
Gk +1,k)me(k) = m(k), (39)
varle* (k)} = H(k + DI(k)Q(k)T(k) -
H'(k+1)+G(k+1,k) S(k) -
GT(k+1,k) = R(k),
(40)
coviv(k),e (I =
LQURI™(R)H™(k + 1) 18, = 8™ (k).
(41)
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Equation (22) and (33) and their accompanying
equations constitute an approximate description of system
T, and only correlated noises exist in the new descrip-
tion.

Define;

del

QCk) =1{2(1),2(2) -, 2(k)}. (42)
Let Po(k | k) and P,(k | k) be the covariance ma-
trices of the bias-free state estimate and the bias estimate
of system I respectively’) . Let x(k | k) be the state
estimate of system [ in the presence of bias, b(k k)
be the bias estimate. Obviously we have:
(k1 0k =-1)) = (k| k)
(k1 Q) =2k k+1),
Po(k 1 Q(k-1)) = Po(k | k)3
Po(k 1 Q(k)) = Po(k | k + 1),
Py (k1 0(k-1)) = P,(k | k);
P (k1 Q(k)) = P(k1k+1).
From (32) it leads to;
Pkl k+1)=P(k+11k+1). (44)
Based on the approximate model (22), (32) and
(33) of system 1 , and with the aid of Lemma 2.1, the
results in [6] can be directly applied. Through a tedious
deduction and by using (43) and (44), we finally ob-
tain a pseudo separate-bias estimation algorithm as fol-

(43)

lows:
Algorithm 3.1 (Pseudo separate-bias estimation
algorithm)
(k1 k+1) =
FaCh -1 k), bk =11 k), u(k=1),k-1)+
k-~ m,(k-1) +
Tk = DIy(k) = F(k,k - Dy(k - 1) -
B(x(k=114k),0(k-11Kk),k-1)-
mer (k= )] + [Ko(k) + V(E)K, (k) v (k),
(45)
(k1 k+1) =b(k1k)+ K(E)y(k),  (46)
with
Ko(k) = Polk | k)CH" (B)T -
[H* (B)Po(k | E)Y(H* (W)Y + R(K)T,

(47)
V(k) = [1- K(k)H" (B)]U(Ek - 1) -
Ko(k)D ™ (k), (48)
K(k) = Py(k+ 11 k+ D[H" (K)V(E) +
D*(k)I"R(k), (49)
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Pyl k+11k+1) =
(ACEYPy(E 1 E)]Y + CY(k) -
[H* (k) Po(k | B)CH* (k)" + R(K)]'C(k),

(50)
1, if k=0,
A(k)={'le if <1, k=1, (51)
Ao, if Ag=1, k=1,
b= oo 2
N(k) = Vo(k) - R(k), (53)
M(k) = D*(k)P,(k | E)(D™(k))T, (54)
Vo(k) =
y(1)yT(1), when Lk =1,
[[POVo(k - 11):p7(k)7T(k)]’ ooy Ly
(55)
C(k) = H*(k)U(k -1) + D* (k), (56)
(k) = y(bk+1) = F(k +1,k)y(k) -
R (x(k1E),bCk 1 k), k) - m,(k),
(57)
Q" (k)=T(k)Q(k)T"(k)-J(k)R(k)J"(k),
(58)
J(k) = T(E)S*(B)R ' (k), (59)
A" (k) = ACk) - J(RYH™ (k), (60)
B* (k) = B(k) - J(k)D™ (k), (61)
x(k+11k+1) =
A (B)x(k 1 k+1) +
B* (k)b (k| k+1) +¢" (k). (62)
B(k+11k+1) =b(k1k+1), (63)
t* (k) =t(k)+T (k) m,(k)+J (k) [y (k+1)-
F(k +1,k)y(k) -
d* (k) - m,(k)], (64)
UCk) = A*(E)V(k) + B* (&), (65)
Po(k | k+1)=[I-Ko(E)H" (k)] Po(k | k),
(66)

Po(k+11k+1) =
A (B)Po(k 1k + (A" ()T + Q* (k).  (67)
The initial value
v(0) = 0. (68)
In (50) A(k) = 1is a fading factor, its value is
on-line adaptively determined by (51) ~ (55), which
make it possible to estimate unknown time-varying

bias!6!,

usually we select p = 0.95. It has been shown that o has

In (55) 0< p <1 is a forgetting factor,

minor influence on the whole algorithm because of the
further adaptive regulation of the fading factor A (k) (see
(6]).
Proposition 3.1
On the basis of Algorithm 3.1, we have the fol-
lowing equality ;
SGR =D TR bk =11 k), ulk-1),k-1) +
r(k-m(k=-1)+ J(k - D[y(k) -
FChk - Dy(k ~1) = k' (x(k =11 k),
bk =11k)k-1) —m~(k-1)]=x(k k).
(69)
The proof of this proposition is straightforward after
substituting (45), (46) and (64) into (62) and through
a simple deduction.
With the aid of (45),(69) is simplified into
a(k1k+1) =x(k 1 k) + [Ko(k) +
V(E)K, (k) 1y (k). (70)
4 Conclusion
An efficient pseudo separate-bias estimation algo-
rithm for a class of nonlinear systems with colored noise
has been proposed in this paper. One of the main appli-
cations of the proposed algorithm may be in parameter
adaptive control of stochastic systems with colored
noise, where the system parameters can be represented in
the form of “bias” and estimated with the states simulta-
neously. The proposed algorithm can also be applied to
the field of parameter estimation based fault detection

and diagnostics of closed-loop nonlinear systems[s'g] .
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