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Abstract; In this paper, the problem of global stabilization for SISO and MIMO affine nonlinear systems with mismatched
uncertainties are investigated. The robust controllers in the form of dynamic output feedback are constructed, which make the

controlled uncertain plants be globally asymptotically stable in Lyapunov’s sense. A simulated example is given to show the ef-

feciency of the proposed method.
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1 Introduction

In recent years, the feedback stabilizing problem for
uncertain nonlinear systems gives rise to considerable at-
tention in automation control field because of its impor-
tance in both theory and application. Since not all state
variables in a system can always be obtained by means of
measurement, it is necessary to construct controllers in
the form of output feedback for the sake of application.
However, at present, the research results concerning out-
put feedback are much fewer than that concerning state
feedback because of its difficulty in theory. And, it has
become a keen problem in control theory field. One of
the characteristics for nonlinear system is that globle sta-
bilization is much more difficult than local stabilization,
so that, at present, there are much fewer research results
concerning the globle stabilization of nonlinear systems,
especially for uncertian nonlinear systems.

* Manuscript received Apr.30,1998, revised Jul.7,1999,

In this paper, the main goal is to discuss the prob-
lems of global stabilizability via dynamic output feedback
for a class of affine nonlinear system with mismatched
uncertianties. Under some assumptions easier to verify,
the global robust controllers which make the controlled
plant be globally asymptotically stable in Lyapunov’s
sense are constructed. The controllers constructed in this
paper possess several remarkable characteristics; they are
in the form of dynamic output feedback, not explicitly
dependent on Lyapunov function and the constructure of
system’ s uncertainties, and with a simple form so that it
is easier to implement. Numerical simulation shows the
efficiency of the proposed controllers.

2 Main results

Consider an uncertain affine nonlinear system;
{9‘5 f(x) + Af + g(x)(Ag + u),

y = h(x),

(1)
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where x € R", u,y € R™, represent state variable, con-
trol input and measured output of the system respective-
ly; g(x) = (g1(x), =, gu(x)),f(x),g(x) €
oo (R, R")(i = 1,2,-,m) and h(x) € C*(R",
g™) with £(0) = 0,h(0) = 0,8(0) » 0,xm; Af(%),
Ag(x) are the mismatched and matched uncertain parts
of the system (1) .

The nominal system corresponding to (1) is

{a.c = f(x) + g(x)u,
y = h(x).

In this paper, we will consider stabilization prob-
lems for SISO and MIMO systems respectively .
2.1 The SISO case

Consider the problem of output feedback stabiliza-
tion of system (1) when m = 1.

By [1], we know that there exists a local coordinate
transformation defined in the neighborhood of O if the nom-
inal system (2) has a relative degree r''!,1 < r < n,

(2)

z ¢‘1(x)
- [ oslasm, 3)
satisfying
Lg¢2(x) =0,
such that (2) is transformed into
e g B MBhesn =<1
z., = alz,w) + b(z,w)u, @)
w = g(z,w),
y=z, z€k, wek ",

where a(z,w) and b(z,w) stand for L; h(+) and
LL7'h(+) in (z,w) respectively, and q(z,w) repre-
sents L$,(+) in (z,w) .

The zero dynamics of the system (2) is character-
ized by

w = q(O, w). (5)

The above analysis shows that the normal form (4)
and the zero dynamics (5) are locally defined. To dis-
cuss the problem of global stabilization, throughout this
paper, we assume that the nominal system (2) possesses
a globle relative degree r,1 < r < n, and make the fol-
lowing assumptions:

Al) A smooth submanifold

Lo={x | x €ER":h(x) =
Lh(x) = - = L7'h(x) = 0}

is connected in R" and the vector fields
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g(x),adg(x),, adi 'g(x)

are complete, where
p LS 5.
g(x) = LgL}“h(x)g(x)’

o Lih (%)
flx) = flx) - LI h(x)

A2) The zero dynamics (2) is globally exponen-
tially asymptotically stable.

A3) The function ¢(z,w) is of Lipschitz uniform-
ly in w, i.e. there exists a positive constant L such that
| (z,w) - g0, w)l < LIzl forall w & &K,

(6)

g(x).

A4) LL7'h(x) = b(y), forall x € R,

Remark 2.1 If Al) holds and (2) has a global
relative degree r.Then the coordinate transformation (3)
and the zero dynamics (5) are defined globally'’ .

Remark 2.2 Under A2),by a converse theorem
of Lyapunov, there exist a Lyapunov function Vy(w) and
positive constants £, ky, k3, k4, such that

kil wl? < Volw) < kol wl?,

av

700(0,0) < kalwl?,
av

|22] < kil ul.

Remark 2.3 There exist indeed many systems
satisfying A4) (e.g.,[4 ~9]), especially, when nomi-
nal system (2) is linear, A4) is satisfied automatically.

Under transformation (3),system (1) becomes
i=1,2,,r -1,

‘%i Ziy1 + 3i1(z,w),

z; = alz,w) + b(y)u + 871(z,w) + & (z,w),
= q(z,w) + (/J(z,w),
Y = Zi
(7
where

¢(z,w) = E;—;Af(x)

s=$"ew)
3 (z,w) = Laih(x) | 41, 05
i =1,2,-,r-1,
8:(z,w) = Leagli 'R ()| g0 09
denote
8z, w) ‘
0 (z,w) = | ,

3r1(Z,W) | =8 (z,w)
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In order to reduce the effects of uncertainties and
achieve robust stabilization by output feedback, we as-
sume ;

A5) There exist constants M, My, M3, such that:
16:(z,w)| < Milyl, 18:(z,w)< Malxl,
¢z w)l < Malyl.

Theorem 2.1 If system (1) (m=1) satisfies

Al) ~ A5), and alz,w) = a(z,w) + a,(y) with
| ai(z,w)| < NI (z,w)] forall (z,w) € it" . Then
there exist a constant k¥* > 0, and two Hurwitz vectors
1=(l,,l,)and d = (dy,"",d,) such that, for all
k=k*, the system (1) can be globally stabilized via
following dynamic output feedback:

0 = A0 — kBAE,S + KE;'1"(y - C9),

(8)
w(0) = - ﬁkd&ﬂ - ax(y),

where (A4,B,C) is Brunovsky form, and E, =
diag(&" 'k, 1) 1,

Remark 2.4 If LL7'h(x) = b(y) = const
and a,(y) = 0, then the dynamic feedback control law
(8) is linear.

Proof The system (7) and controller (8) yield
closed-loop system:

z = Az + 8, + B(a(z,w) + b(y)u + 82),
§ = AG - kBdE,9 + KE;'1"(y — (9),
w = q(z,w) + Y(z,w), (9)

u(8) = - ﬁ(kdlzke + as(9)),

.Y = 2.
Lete = 8 — z, system (9) becomes
¢ = (A= KE;1"C)e - 8,(0 — e, w) -
J B(a;(0 - e) + 8,(0,w)),
(10)
le = (A - kBdE)0 + KEI"Ce,

w = q(z,w) + G(z,w).
Take transformation

HEI]

system (10) becomes

i= k(A -1"Cle - E1(z,w) -

Ba,(0 — e) — B8, (+),
. i } (11)
0= k(A - Bd)d + K'Ce,
W

= q(z,w) + ¢(z,w).

Select appropriate Hurwitz’ s vectors [ and d such
that | P2] | I*C|l < 1;where P, > 0 and P, > O are the
solution of Lyapunov equations:

P(A-1"C) + (A-T"C)'"Py =~ 1,
Py(A - Bd) + (A - Bd)'pr =-1
respectively .
Consider the Lyapunov candidate
V(e,B8,w) = e"Pie + 67 P20 + Vo(w).
Differentiating V along (11) and using AS), we
obtain
V(e,0,w) <
= klel2 s 20el | P Eda] CER'E - o) +
20 el | PiBl (M + NY(Nel+ 181+ Twl) -
k1812 + kg1 P2l 1l T el -
ksl wl? + kgl wl (Lhel+ 181 +
kaM,| CE' (6 - )l <
- Lyllel? - L0817 - Lyl wl?, (12)
where
L = k(1= [Pl eTCl) =3[ Pl Cuy +
N+ Ms) - 1PN + ) -
1
2¢e
L, =k(1 - | Pf117Cl) -
| Pl (M, + N+ M) -

1
kL - ﬁ__leL’

1 1 _1
Sckal = o Lky = Mo Ls
Ls =k3—e\|P1\|(N+M3)—
I
%hL-WMzL.
Let
k kiL
e < 21PN+ M) + 5]
and take

N 1
k =max{P—_—l_"lTC“ “PZ“[3 Pl (M o+

1
N+ My) + — | Pl (N + M) +
UAs 2M, 1 1}
2 ’ k4 ’
it follows that L, > 0,L, > Oand Ly > Ofork > k™,

which completes the proof.

1
€k4L +
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2.2 The MIMO case

For the MIMO system (1) (u € B™,y € R™, m
> 1), we take the following assumptions which are
multivariable versions of the case of SISO.

A6) The nominal system (2) possesses a global
vector relative degree (ry,ry, ", ry),r; > 1, E =
i=1]

én

A7) There exists a globally defined coordinate

transformation
z Tl(x)
=T = [ . 13
[2]= 10 = [ 255 (13)
such that system (2) becomes
'ztl = zé,
Z:—] = Z:—,
. (14)
Z; . a‘i(z’w) + Zbu(z,w)uj,
! i=1
Yi = zil’
w = q(z,w),
with
bi(z,w) =Lg,L;f'1h,-(T"1(z,w)),
foralll < i,/ < m,
ai(Z,U}) =L;"h,‘(T_1(Z,1,U)),
foralll < i < m,
and

g(z,w) = dTy « f(T'(z,w)).

A8) The zero dynamics of system (2) is globally
exponentially stable.

A9) The uncertainties Af(x) = 0.

A10) bij(z,w) = bU(y) forall i < i,j < m.

Remark 2.5 A necessary and sufficient condi-
tion for existence of global diffeomorphism (13) is given
in [2]. Especially, it implies that the distribution
(gl(x),-",gm(x)) is involutive.

Theorem 2.2 Let a(z,w) = (a;(z,w), ",
a(z,w))T, if a(z,w) = ai(z,w) + ay(y),
”51(2,10)“ < M| (z,w)|, Af, satisfies AS), and
MIMO uncertain system (2.1) satisfies A6) ~ A10),
then the system (2.1) can be globally stabilized via the
following dynamic output feedback ;

{9 = A9 - kBDE,0 + H(k)L"E(y - C8),

u(0) = - A-'(y)(kDE - ay(y)),
(15)
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where
A = blockdiag( A1, A%, s Apn) »
B = blockdiag(b,,b5,"*", b)),
0
0 1 0 0 0
0 0 1 0 O
Ay = by =
0 0 0 1
0
0 0 0 = 0 0/,
1 r.xl

i

Az, w) = (b5(9)) mxm>
C = blockdiag(cy,cy,* "y cpn) s
¢ = (1,0,:,0),

— e ——

E, = blockdiag(E, , Ey >, E; ),

E, = diag(k 1, k,1),

H(k) = blockdiag(H,(k),--+, H,(k)),
H,(k) = diag(k, k>, -, k),

L = blockdiag(1;,"**,1,),

D = blockdiag(d;,*"",d,,),

and
li = (l%’lé,'”,lé)s di = (dilyn'ydf')

are Hurwitz vectors to be chosen such that
| P 127l < 1.
Proof Notice that
kT
EH(E)L" = LT = L7
kn
PRIEY
CE;' = c,
(D

with the help of the same arguments as in Theorem 2.1,
we can prove Theorem 2.2, it is omitted here.
3 Example with simulation
Consider four order system :
X, = x3+ &,
%y = %5 + 2m3( %y — %3) — %y + 2531 + &,
1%3 = %)~ 23 + u + &,
j-64 = X1+ %4,
Y = X4,
where, &,(i = 1,2,3) are system’s uncertainties.
This system has a relative degree 3, and zero dy-
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namics Take:
9;?2 = - %X2. k= 60, El = ax4sinx4,
Take Hurwitz vectors: & = 2bx,,
d = (1,3,3), l=(1—3— _—3—)’ & = c(1 - cosxs),

5 7625715528
then, the matrix

1 37 31 8
P = 16 31 52 13
13 7

is the solution of Lyapunov’ s equation
P(A + Bd) + (A + Bd)"P =-1,
which satisfies | Pl < 5,1 PI"[ < 1.

x(O) = (2, = 10,5,0),
6(0) = (0,0, - 2),
b=4, ¢=3.

The simulation result is shown in Fig.1.

a =2,

From the result, it can be seen that the system has
been stabilized globally .

4
By Theorem 2. 1, constructing observer
3 2
91 = 02 + Z_Sk(x4 - 01),
3 0
0, = 01 + 662511:2(964 - 01), Ll
3
93 = - k301 _3k262_3k03+E5—28(x4_ 61)’ 5
0 10 2
u = - k6 - 3k°0, — 3465 @
150 10 0.5
100
r 0 'L i
S0k 0.5
\L o
0 -1
—50 - —-20 - -1.5 ;
0 10 20 0 10 20 0 10 20
®) x, (©) x3 (d) x4
0.4 10 40
0.2
5t 20
0
0 :
e 0
—04| i -5 . —20| ,
0 10 20 0 10 20 24 0 10 20
(e) o ® o, (&) 63

Fig. 1 system's and dynamic compensator’s state trajectories

4 Conclusion

In this paper, we discussed the problem of global
stabilization for a class of affine nonlinear systems with
both matched and mismatched uncertainties. The con-
structed controllers are in the form of dynamic output
feedback , which are more practical in system’ s design.
The simulated result shows the efficiency of the proposed
method.

The assumptions A4) and Al0) play an important
role in the proof of our theorem. These assumptions actu-
ally mean that the control channels of the system can
only depend on system’ s output, which confines the ap-

plication scope of the controllers in this paper.
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