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CONTROL THEORY AND APPLICATIONS

Genetic-Based Neurofuzzy Control for Complex Industrial Process™

Wang Yaonan and Zhang Changfan
(Department of Electricial Engincering, Hunan University* Changsha,410082,P.R. China)

Abstract; This paper proposes an effective fuzzy neural network controller based on genetic algorithm (GA) and super-

vised gradient descent leamning. The fuzzy network control processing can be viewed as a parallel neural network where each neu-

ron represents a fuzzy membership function and each link represents the weight of a fuzzy rule, and it has two important charac-

teristics of adaptation and learning. The effectiveness of the proposed scheme is illustrated through simulation and temperature

control processes.
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1 Introduction

Conventional fuzzy logic controllers generally re-
quire a certain reasonable set of fuzzy rules that integrate
heuristics and intuition of human operators. The most
important and difficult problem in the fuzzy logic con-
troller design is how to obtain the proper control rules for
a given plant. However, in the case of a system that has
very complicated dynamic characteristics such as indus-
trial rotary kiln, we will encounter significant difficulties
to find the best fitted or at least reasonable fuzzy rules to
control such a system.

Recently, fuzzy neural network control systems have
been extensively studied!! 3! The neural network’ s
ability to produce arbitrarily nonlinear mappings has been
demonstrated in various application studies. A well-
trained network with such a capability could map input
signals into adequate control actions for controlling com-
plex dynamic systems. The neural network can leam con-
trol experience in some training courses by way of ade-
quate updating for network parameters, and it has a
greater tolerance in system uncertainty than traditional
controllers do. The parallel distributed processing archi-

tecture enables the networks to achieve extremely fast
computations. Fuzzy neural controllers, therefore, have
great potentiality for controlling dynamic industrial kiln
furnace processes.

In this paper, we propose a fuzzy logic network
controller (FLNC) for industrial rotary kiln. The pro-
posed controller can learn to control a complex system
and adapt to a wide range of variations in plant parame-
ters. To guarantee convergence and fast leaming, the
agjustment of the parameters in the proposed FLNC will
be divided into two parts which are the IF (premise)
part and THEN (consequence) part of the fuzzy logical
rules. In the premise part, the shape of membership func-
tion can be optimized by means of a genetic algorithm.
In the consequent part, the link weight of the fuzzy logi-
cal network is updated on-line using supervised gradient
descent learning method.

2  Fuzzy neural network controller
2.1 Fuzzy logic control

In general, the dynamic behavior of a fuzzy logical

controller is characterized by a set of linguistic control

rules based on the knowledge of an expert.In this paper
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the simplified fuzzy reasoning in which the consequent
parts are expressed by real numbers is employed in this
method. When input variables are expressed by x;(j =
1,-*,m) and an output variable by y, the inference
rules of the simplified fuzzy reasoning can be expressed
by the following:
Rule i : If x, is A;; and,*,and x,, is A;, the y is w;.
(1)
Where A4;(i = 1,**,n) is the membership func-
tions in the antecedent part, and w; is a real number in
the consequent part. The output of the simplified fuzzy
reasoning , ¥ can be derived by using the following equa-

tions:

wo= Tlay), 2)

2 Mt Wi
4 hape s (3)
E Hi
=l
where y; is a membership value of i-th inference rule.

The proposed fuzzy neural feedback control system
is shown in Fig.1. The neural network-based, controller
is a four-layer fuzzy logic network (FLNC) with two in-
puts (x, and x,) and one output (control increment,
u).

A schematic diagram of the proposed fuzzy logical
network (FLNC) structure is shown in Fig.2. Next, we
shall indicate the signal propagation and the basic func-
tion of every node in each layer.
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Fig. 1 The fuzzy logic net feedback control system
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Fig. 2 Schemalic diagram ol a fuzzy logic network

Layer 1. input layer.
For the jth node of Layer 1, the network input and

the network output are represented as:
=W <20 =, oW=fPUP) = KD,
(4)
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represents the ith input to the jth node of Layer 1.

where the weights w;;’ are assumed to be unity and xj(-])
Layer 2;: membership layer.
In this layer, each node performs a membership
function. The Gaussian function is adopted here as a

membership function.

Then
(xgz) - ai,)z
R e T A
if
oj(Z) = ﬁz)(]jqz)) = exp(lj(-2)),

where a; and b; are, respectively, the center and the
width of the Gaussian function in the jth term of the ith
input linguistic variable x (.

Layer 3. rule layer.

The links in this layer are used to implement the
antecedent matching. The matching operation or the
fuzzy AND aggregation operation is chosen as the simple
product operation instead of MIN operation . Then, for the

Jth rule node
= TTwg - o,

0](3) - fj3)(1](3)) - ]j(‘3)’

is also assumed to be unity.

(6)

()
iJ

Layer 4. output layer.

where w

Since the overall net output is a linear combination
of the consequences of all rules, the net input and output
of the jth node in this layer are simply defined by

I!l1
I§4) =] S_JWE;O ¢ x$4), 01(4) = f§4)(lj(-4)) = ]}4),

(7)
where the link weight WE;‘) is the output action strength
of the output associated with the ith rule. Note that /;, o;
and f; are the summed net input, output and activation
function of node j respectively. The above configuration
shows that, by modifying the centers and widths of Layer
2 and the link weights of Layer 4, the membership func-
tion can be tuned and all the consequence strengths of
fuzzy rules could be identified respectively. The learning
process to train the proposed fuzzy logic network will be
discussed in the following section.

3 Self-tuning method of fuzzy logic net-

work
3.1 Learning method using genetic algorithm

The proposed method is to optimize the number of
inference rules and the shapes (a;,b;) of the member-
ship functions in the antecedent parts by a genetic algo-
rithm,

A genetic algorithm (GA)™! is a method to obtain
an optimal solution by applying a theory of biological
evolution. The most advantageous feature of the GA is a
possibility of escaping from local optimum because of
probabilistic operations such as crossover and mutation.
In the GA, a solution candidate S, which maximizes an
objective function ¥(S,) called fitness, is searched. The
solution candidate is expressed by the string, called indi-
vidual, which is expressed by the following;

S = LyLo Ly,
where L, (g = 1,-:-, G) is a variable taking a value of
either “1” or “0”. For instance,an example of the indi-
vidual S, with G = 13 is expressed by the following
string ;
S, = 1001000110011,

A set of individual, S, called population, is ex-
pressed as follows:

S= 150,55 % Sk .

The procedures for obtaining the optimal solutions
(a; , b} ) using the GA are shown below:

1) The shapes («;, b;) of membership function in
the FLNC network are determined according to the string
of the individual S,(t). The individuals S, S;, "+, Sy,
which constitute a population S(¢) of the 0-th generation
(¢t = 0) are determined by uniform random numbers.

2) The fitness F(S,) for each individual S, is de-
rived to determine a selection probability PS,( ¢) which is

expressed by the following;

Po() = B8 (®)
DLF(S, (1))

F(S,(t)) = I/E, (9)

E - é—i‘(v, _ i), (10)

where U is the desired output, U;" is the actual output of
the FLNC net.

3) Two individuals S;(z) and $;(t) are selected
from the population S(¢) in accordance with the selec-
tion probabilities PS’_( t) and })_q/(l).
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4) An operation called crossover is applied to the
individuals S;(¢) and S;(¢). The crossover operation se-
lects a boundary in the strings with probability of 1/( G
- 1), and exchanges the blocks of strings about the
boundary. One of the two individuals produced by this
operation is selected at random, and is nominated as the
new individual ', (¢).

5) An operation called mutation is applied to
S’ (t). By this, each element of the individual S",( )
is reversed according to a mutation probability P,,(0.05
< P, <0.1).

6) The number of newly produced individuals, k,
is compared with the total number of individuals, N,
and if K < N,k is increased by one, and steps 3) to 6)
are repeated. Otherwise, the algorithm proceeds to the
next step.

§S'(e) = {8,(2),
produced in steps 3) to 6), is

7) The new population,
S’z(t>,"',S’R(t)} s
substituted into the population on the next generation
St +1).

8) The generation ¢ is increased by one, and the
steps 2) to 8) are repeated until a convergence of the
population S is obtained.

An individual which has the highest fitness in the
converged population is defined as the final solution
(ai,b/).

3.2 Supervised gradient descent learning

A supervised leaming law is used to tune on-line
the link weights of Layer 4 in the FLNC. The basis of
this algorithm is simply gradient descent. The derivation
is the same as that of the back propagation leaming law.
By recursive applications of the chain rule, the error
term for each layer is first calculated.

Let the cost function, [J, for training pattern ¢ be
proportional to the sum of the square of the difference
between the plant output y(t) and the desired output
yo(t), and let J be defined by

IE & [yd(t)--w(tﬂ (11)

Then the gradient of error in Eq. (11) with respect

to an arbitrary weighting vector W € " becomes
aJ de(s) Iy(1)
aw(@ = (1) - awew = —e(1) i T
—e(t) . a!(ﬁ) . du,(t) -
du(z) aw®

—e(1) + y,(2) * W<4)— —e(1) +2¥ - y,(1), (12)

where

e(t) = yo(1) - y(u)
is the error between the actual plant and the desired out-
put,

yo(t) = 3y (2)/ule)
is the plant sensitivity. The plant sensitivity can be com-
puted as follows:

Ay(t)  ylult+1)] = ylule)]
u() = uGa D (-

The weight can be adjusted by using a gradient
method
WP (1 + 1)

iy W(4)(t) +AW(4)(I) -

(7
WO + g - 500) . (19)

where 7 is a learning rate.

4 System simulation and temperature
control for rotary kiln

4.1 Examples of simulation

the FLNC is constructed by

the 2-14-49-1 neuron. We used the 49 fuzzy control

rules as shown in Table 1.

In system simulation,

Table 1 Fuzzy control rules
Xy NB | NM | NS Z | PS PM _PB

NB | -6.0| -6.0| 4.0/ 6.0 —4.0] 4.0/ 4.0
NM | -6.0| -4.0| —2.0| =4.0| —4.0| —4.0| -2.0
NS | -4.0| 4.0/ —2.0| =2.0| —2.0| —0.0| —2.0
Z |-4.0/-20/ 000020/ 40]|-6.0
PS | -4.0/-2.0] 40| 20|20 20| 4.0
PM | 2.0 | 40| 40| 40|20/ 40 6.0
PB | 4.0 [ 40| 40| 60| 4.0 6.0 | 6.0

The constants in this table are set as the initial con-
nection weights WW (0) for the FLNC. The central
points of the fuzzy sets NB, NM, NS, Z, PS, PM,
PB, ¢;(0) (j = 1,2:-'7) are -6, -4, -2,0,2,4,6,
respectively. The width values of the membership func-
tion, b;(0) are all unity so as to equally allocate seven
fuzzy sets on the range [ - 6,6, here, b;(0) = 2.5.

Example 1

The controlled plant is a nonlinear system with a
stochastic disturbance acting on it. The plant is in the

form.
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vt = De 7Y 4 uls - 1)
1+ u(t - 1)e 7V

where w(t) is a white noise with 0. 15 standard vari-

y(t) = + w(t),

ance.

y(t) =

The response of the plant is illustrated in Fig.3.
Example 2
The plant is a nonlinear system with time delay,

i.e.

(e =yt = 2)y(t =3yt —4ule —4) - y(t - Vyle 2 y(t =3)ult —4) + ulz - 5)

1+ 93t =3) +y (¢ - 4)

where time delay d = 4, Fig.4 illustrates the step response curves of the FLNC control.
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Fig. 3 Output of the plant for Example |
4.2 Temperature control of the rotary kiln fur-
nace
After system simulation procedure, the proposed
FLNC control schems is applied to the temperature con-
trol of industrial rotary kiln. The temperature control
system can be divided into five main components: the
rotary kiln furnace, the temperature sensor, module, the
programmable input-output interface board, the micro-
computer, and the actuator. The interface circuit board
consists of an analogue-to-digital (A/D) convertor, a
digital-to-analogue ( D/A ) convertor and a pro-
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Fig. 4 Output of the plant for Example 2

grammable peripheral interface device. An extemal clock
is designed to operate the A/D and D/A convertor. The
microcomputer used in the system is the super-386, with
an Intel 80386 32-bit CPU with a 40MHz clock speed.
The FLNC control programs are written using Turbo-C
to provide the control input to the actuator through the
D/A and also to measure the output temperature.

In the experiment, the sampling time in 30 sec-
onds, and the setpoints are 500C, 1000°C respectively.
Fig.5 illustrates the temperature response of the kiln fur-

nace.

r°C
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Q00§
800 |
700
600 ¢
SO0
400
3001
200
100

On 8 16 24 32 - A{O min 48

lig. 5 The temperature response ol the Kiln furnace

5 Conclusion
A new intelligent control system based on the ge-

netic algorithm and the fuzzy neural networks has been

proposed in this paper. The simulation results and the
practical application of the industrial rotary kiln furnace

show that the proposed control system has two important
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characteristics; adaptation and learning. It can handle
some nonlinear, slow time-varying, and stochastic dis-
turbed process control problem, and can obtain good
control performance. The proposed control scheme can

also be applied to complex process control.
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(Continued from page 885)

Stability analysis of APRCA2: The intelligent
marking capability of APRCA was incorporated into
EPRCA and a new scheme called APRCA2 was pro-
duced. APRCA2 solves the problem of source-bottle-
neck. The other parts of APRCA2 is the same as
APRCA. So from the proof of instability of APRCA,

we can see APRCA?2 is unstable too.

5 Conclusion

In the present work, the stability of APRCA and
APRCA2 were studied. From the analysis of APRCA
and APRCA2, we found they are unstable in some con-
ditions. This is the first paper that has made the discov-
ery and we hope it will give useful advice in practical

engineering .
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