Mixed Scalar l_1/H_2 Problem for Discrete Time Systems *

Wu Jun and Chu Jian

(National Laborary of Industral Control Technology, Institute of Advanced Process Control, Zhejjang University Hangzhou, 310027, P. R. China)

Abstract: A discrete time l_1 control design problem involving a constraint on H_2 performance is formulated and an upper approximation method for the solution of this infinite dimensional optimization problem is introduced. Suboptimal solutions of the problem can be obtained by solving a sequence of truncated problems. The continuity property of the optimal value with respect to changes in the H_2 constraint is studied.

Key words: l_1 control; H_2 control; discrete time systems; continuity property

单变量离散混合 l_1/H_2 问题

吴 俊 褚 健

(浙江大学先进控制研究所,工业控制技术国家重点实验室·杭州,310027)

摘要:本文描述了 H_2 性能约束下的离散控制系统 l_1 设计问题,并提出了该无穷维优化问题的一种上逼近解法,通过求解一系列的截断问题能够得到无穷维问题的次优解,混合 l_1/H_2 问题最优值对 H_2 约束连续依赖的性质也在本文得到研究.

关键词: l_1 控制; H_2 控制; 离散系统; 连续性

1 Introduction

For the Linear Shift Invariant (LSI) systems, the fundamental differences between H₂ control design and l₁ control design can be traced to the modeling and treatment of uncertain exogenous disturbances^[1,2]. The object here is to consider the simultaneous treatment of both H₂ and l_1 performance criteria. The design of controllers to satisfy mixed performance criteria, such as mixed H_2/H_{∞} control, mixed l_1/H_{∞} control, mixed H_2/l_1 control has recently been the focus of researchers $[3 \sim 7]$. For SISO control systems, mixed l_1/H_2 problem of minimizing the l_1 norm of the closed loop map while maintaining its H₂ norm at a prescribed level was addressed and studied in [8]. This paper intends to consider the general mixed l_1/H_2 control problem, i. e. to minimize the l_1 norm of a closed loop transfer function, subject to an inequality constraint on the H₂ norm of another closed loop transfer function.

2 Problem formulation

Let \mathbb{R} denote the field of real numbers, \mathbb{R}^m denote the m-dimensional real vectors, C denote the field of complex numbers, Z_+ denote the nonnegative integers. A

causal SISO LSI transfer function \hat{G} can be described as $\hat{G} = G(0) + G(1)\lambda + G(2)\lambda^2 + \cdots$, $G(k) \in \mathbb{R}$. As \hat{G} can be represented uniquely by its impulse response sequence

$$[G(0),G(1),G(2),\cdots]^T$$

 \hat{G} and its impulse response sequence are not differentiated in notation through this paper. Define

$$\begin{split} l_e &= \{ \hat{G} \mid \hat{G} = G(0) + G(1)\lambda + \dots, G(k) \in \mathbb{R} \}, \\ l_2 &= \{ \hat{G} \in l_e \mid \sum_{k=0}^{\infty} (G(k))^2 < \infty \}, \end{split}$$

$$l_1 = \{\hat{G} \in l_e + \sum_{k=0}^{\infty} |G(k)| < \infty\},$$

 $Rl_e = \{\hat{G} \in l_e \mid \hat{G} \text{ is a rational function of } \lambda\}$,

 $Rl_1 = Rl_e = \bigcap l_1.$

For any $\hat{G} \in l_1$, the l_1 -norm of \hat{G} is given by

$$\|\hat{G}\|_{1} = \sum_{k=0}^{\infty} |G(k)|.$$

For any $\hat{G}_1,\hat{G}_2\in l_2$, the inner product of \hat{G}_1 and \hat{G}_2 is given by

$$\langle \hat{G}_1, \hat{G}_2 \rangle = \sum_{k=0}^{\infty} G_1(k) G_2(k).$$

^{*} The work was supported by the National Natural Science Foundation of China under Grant (69504010) and Cao Guangbiao Foundation of Zhejiang University.

Then l_2 is Hilbert space, and $\forall \ \hat{G} \in l_2$, the l_2 -norm of \hat{G} is

$$\parallel \hat{G} \parallel_2 = \sqrt{\langle \hat{G}, \hat{G} \rangle} = \sqrt{\sum_{k=0}^{\infty} (G(k))^2}.$$

 $\parallel \hat{G} \parallel_2$ is also the H₂-norm of \hat{G} .

The mixed l_1 / H_2 control problem can be stated as: Given \hat{T}_1 , \hat{T}_2 , \hat{V}_1 , $\hat{V}_2 \in Rl_1$ and a constant γ , find $\hat{Q} \in Rl_1$ such that $\| \hat{T}_1 - \hat{Q}\hat{V}_1 \|_1$ is minimized and $\| \hat{T}_2 - \hat{Q}\hat{V}_2 \|_2 \leqslant \gamma$. Define

$$\xi(\gamma) = \{\hat{Q} \in Rl_1 + || \hat{T}_2 - \hat{Q}\hat{V}_2 ||_2 \leq \gamma \}$$

and

$$\gamma_0 = \inf_{\hat{Q} \in Rl_1} \| \hat{T}_2 - \hat{Q}\hat{V}_2 \|_2,$$

obviously, $\xi(\gamma)$ is nonempty when $\gamma > \gamma_0$. The mixed l_1/H_2 problem is described as

$$\mu(\gamma) = \inf_{\hat{Q} \in \mathcal{E}(\gamma)} \| \hat{T}_1 - \hat{Q} \hat{V}_1 \|_1. \quad (OPT)$$

It is easy to see that $\mu(\gamma)$ is a decreasing function. Throughout this paper, there are the following assumptions:

a)
$$\gamma \in (\gamma_0, \infty)$$
.
b) $\hat{V}_1 = \lambda^m + V_1(m-1)\lambda^{m-1} + \dots + V_1(0) = \prod_{i=1}^m (\lambda - \lambda_i) \in \mathbb{R}^{m+1}$.

This assumption is not restrictive and is made to streamline the presentation of the paper. For

$$\hat{V}_1 = \frac{\lambda^m + a_{m-1}\lambda^{m-1} + \dots + a_0}{b_n\lambda^q + b_{n-1}\lambda^{q-1} + \dots + b_0} \in Rl_1,$$

we have

$$\hat{Q}\hat{V}_{1} = \hat{Q}'\hat{V}'_{1} = \frac{\hat{Q}}{(b_{n}\lambda^{q} + \dots + b_{0})}(\lambda^{m} + a_{m-1}\lambda^{m-1} + \dots + a_{0}).$$

Obviously, the denominator part of \hat{V}_1 can be absorbed into \hat{Q} .

c) $\Lambda = \{\lambda_1, \dots, \lambda_m\} \subset D$, where D is the open unit disk in C. When there is one element of $\{\lambda_1, \dots, \lambda_m\}$ on the unit circle, we say the problem is singular. The singular problem is difficult to be solved and still an open problem now. This paper only deals with the non-singular problems.

d)
$$\hat{V}_2 = \lambda^n + V_2(n-1)\lambda^{n-1} + \cdots + V_2(0) \in \mathbb{R}^{n+1}$$
. Similar to Assumption b), the denominator part of \hat{V}_2 can be absorbed into \hat{O} .

e) There exists a
$$\hat{Q}_0 \in Rl_1$$
 such that $\|\hat{T}_2 - \hat{Q}_0\hat{V}_2\|_2 = \inf_{\hat{Q} \in Rl_1} \|\hat{T}_2 - \hat{Q}\hat{V}_2\|_2 = \gamma_0.$

3 Continuity

Let $M = \| \hat{T}_1 - \hat{Q}_0 \hat{V}_1 \|_1 + 1$, where \hat{Q}_0 is defined in Assumption e). Obviously, $\hat{Q}_0 \in \xi(\gamma)$ and $\inf_{\hat{Q} \in \xi(\gamma)} \| \hat{T}_1 - \hat{Q} \hat{V}_1 \|_1 < M.$

Define

$$\xi_1 = \{ \hat{Q} \in Rl_1 \mid || \hat{T}_1 - \hat{Q}\hat{V}_1 ||_1 \leq M \}.$$

Obviously,

$$\inf_{\hat{Q} \in \xi(\gamma)} \parallel \hat{T}_1 - \hat{Q} \hat{V}_1 \parallel_1 = \inf_{\hat{Q} \in \xi(\gamma) \cap \xi_1} \parallel \hat{T}_1 - \hat{Q} \hat{V}_1 \parallel_1.$$

Define

$$\xi_2 = \left\{ \hat{Q} \in Rl_1 \middle| \| \hat{Q} \|_1 \leqslant \frac{\| \hat{T}_1 \|_1 + M}{\prod\limits_{i=1}^m (1 - |\lambda_i|)} \right\}.$$

Proposition 3.1 $\xi_1 \subset \xi_2$.

Proof Space C_1 is defined as

$$\left\{ \hat{G} \middle| \hat{G} = \begin{bmatrix} G(0) \\ G(1) \\ \vdots \end{bmatrix}, \quad \sum_{k=0}^{\infty} |G(k)| < \infty, \quad G(k) \in C \right\}.$$

For any $\hat{G} \in C_1$, the C_1 -norm of \hat{G} can be given by $\| \hat{G} \|_1 = \sum_{k=0}^{\infty} \| G(k) \|$. Obviously, l_1 is a subset of C_1 and C_7 norm in l_1 space is exactly l_7 norm. With C_7 norm, for any $\hat{Q} \in \xi_1$, it follows that $\| \hat{T}_1 \|_1 + M \geqslant \| \hat{T}_1 \|_1 + \| \hat{T}_1 - \hat{Q}\hat{V}_1 \|_1 \geqslant$

$$\|\hat{Q}\hat{V}_1\|_{\perp} \geqslant \|\prod_{i=1}^{m} (\lambda - \lambda_i)\hat{Q}\|_{\perp} \geqslant$$

$$\|\lambda\prod_{i=2}^{m}(\lambda-\lambda_{i})\hat{Q}\|_{1}-\|-\lambda_{1}\prod_{i=2}^{m}(\lambda-\lambda_{i})\hat{Q}\|_{1}\geqslant$$

$$(1 - |\lambda_1|) \parallel \prod_{i=2}^{m} (\lambda - \lambda_i) \hat{Q} \parallel_1 \geqslant \cdots \geqslant$$

$$\prod_{i=1}^{m} (1 - \mid \lambda_i \mid) \parallel \hat{Q} \parallel_{1}.$$

The above means that

$$\|\hat{Q}\|_{1} \leq \frac{\|\hat{T}_{1}\|_{1} + M}{\prod_{i=1}^{m} (1 - |\lambda_{i}|)}.$$
 Q.E.D.

Proposition 3.2 $\inf_{\hat{Q} \in \mathcal{E}(\gamma)} \| \hat{T}_1 - \hat{Q}\hat{V}_1 \|_1 = \inf_{\hat{Q} \in \mathcal{E}(\gamma) \cap \mathcal{E}_1} \| \hat{T}_1 - \hat{Q}\hat{V}_1 \|_1 = \mu(\gamma).$

Proof Since
$$\hat{\xi}(\gamma) \cap \hat{\xi}_2 \subset \hat{\xi}(\gamma)$$
,
$$\inf_{\hat{Q} \in \hat{\xi}(\gamma)} \| \hat{T}_1 - \hat{Q}\hat{V}_1 \|_1 \leq \inf_{\hat{Q} \in \hat{\xi}(\gamma) \cap \hat{\xi}_2} \| \hat{T}_1 - \hat{Q}\hat{V}_1 \|_1.$$

On the other hand, from Proposition 3.1, we have $\inf_{\hat{Q} \in \xi(\gamma) \cap \xi_2} \| \hat{T}_1 - \hat{Q} \hat{V}_1 \|_1 \leq \inf_{\hat{Q} \in \xi(\gamma) \cap \xi_1} \| \hat{T}_1 - \hat{Q} \hat{V}_1 \|_1.$

Hence

$$\begin{split} &\inf_{\begin{subarray}{c} \dot{\boldsymbol{q}} \in \boldsymbol{\varepsilon}(\gamma) \end{subarray} \parallel \hat{T}_1 - \hat{\boldsymbol{Q}} \hat{\boldsymbol{V}}_1 \parallel_1 \geqslant \\ &\inf_{\begin{subarray}{c} \dot{\boldsymbol{q}} \in \boldsymbol{\varepsilon}(\gamma) \cap \boldsymbol{\varepsilon}_1 \end{subarray} \parallel \hat{T}_1 - \hat{\boldsymbol{Q}} \hat{\boldsymbol{V}}_1 \parallel_1 \geqslant \\ &\inf_{\begin{subarray}{c} \dot{\boldsymbol{q}} \in \boldsymbol{\varepsilon}(\gamma) \cap \boldsymbol{\varepsilon}_2 \end{subarray} \parallel \hat{T}_1 - \hat{\boldsymbol{Q}} \hat{\boldsymbol{V}}_1 \parallel_1. \end{split}$$

Thus

$$\inf_{\hat{\boldsymbol{Q}} \in \boldsymbol{\varepsilon}(\boldsymbol{\gamma})} \parallel \hat{\boldsymbol{T}}_1 - \hat{\boldsymbol{Q}} \hat{\boldsymbol{V}}_1 \parallel_1 = \inf_{\hat{\boldsymbol{Q}} \in \boldsymbol{\varepsilon}(\boldsymbol{\gamma}) \cap \boldsymbol{\varepsilon}_2} \parallel \hat{\boldsymbol{T}}_1 - \hat{\boldsymbol{Q}} \hat{\boldsymbol{V}}_1 \parallel_1.$$

Q.E.D.

Proposition 3.3 Given $\gamma_0<\gamma_1<\gamma_2<\infty$, then for any $\hat{Q}_2\in\xi(\gamma_2)\cap\xi_2$, there exists a $\hat{Q}_1\in\xi(\gamma_1)\cap\xi_2$ such that

$$\| \hat{Q}_1 - \hat{Q}_2 \|_1 \leq 2 \frac{\gamma_2 - \gamma_1}{\gamma_2 - \gamma_0} \frac{\| \hat{T}_1 \|_1 + M}{\prod_{i=1}^m (1 - |\lambda_i|)}.$$

Proof From Assumption e and Proposition 3.1, we can conclude that there exists

$$\hat{Q}_0 \in \xi(\gamma_1) \cap \xi_2 \subset \xi(\gamma_2) \cap \xi_2.$$

Let
$$\rho = \frac{\gamma_2 - \gamma_1}{\gamma_2 - \gamma_0}$$
 and $\hat{Q}_1 = \rho \hat{Q}_0 + (1 - \rho) \hat{Q}_2$.
Obviously $\rho \in (0,1)$ and $\hat{Q}_1 \in \xi(\gamma_1) \cap \xi_2$. Next, $\|\hat{Q}_1 - \hat{Q}_2\|_1 \le \|(\rho \hat{Q}_0 + (1 - \rho) \hat{Q}_2) - \hat{Q}_2\|_1 \le \rho(\|\hat{Q}_0\|_1 + \|\hat{Q}_2\|_1) \le 2\frac{\gamma_2 - \gamma_1}{\gamma_2 - \gamma_0} \frac{\|\hat{T}_1\|_1 + M}{\|(1 - \lambda_i)\|}$.

Q.E.D.

Proposition 3.4 Given $\gamma_0 < \gamma_1 < \gamma_2 < \infty$ and $\mu(\gamma_1) = \inf_{\hat{Q} \in \epsilon(\gamma_1) \cap \xi_2} \| \hat{T}_1 - \hat{Q}\hat{V}_1 \|_1,$ $\mu(\gamma_2) = \inf_{\hat{Q} \in \epsilon(\gamma_2) \cap \xi_3} \| \hat{T}_1 - \hat{Q}\hat{V}_1 \|_1,$

then

$$H\frac{\gamma_2 - \gamma_1}{\gamma_2 - \gamma_0} \geqslant \mu(\gamma_1) - \mu(\gamma_2) \geqslant 0,$$

where

$$H = 2 \frac{\parallel \hat{V}_1 \parallel_1 (\parallel \hat{T}_1 \parallel_1 + M)}{\prod\limits_{i=1}^m (1 - \mid \lambda_i \mid)},$$

Proof $\mu(\gamma_1) - \mu(\gamma_2) \ge 0$ is the direct result of the fact

$$\xi(\gamma_2) \cap \xi_2 \supset \xi(\gamma_1) \cap \xi_2.$$

From Proposition 3.3, \forall $\hat{Q}_2 \in \xi(\gamma_2) \cap \xi_2$, there exists a $\hat{Q}_1 \in \xi(\gamma_1) \cap \xi_2$ such that

$$\| \hat{T}_{1} - \hat{Q}_{2} \hat{V}_{1} \|_{1} \geqslant$$

$$\| \hat{T}_{1} - \hat{Q}_{1} \hat{V}_{1} \|_{1} - \| \hat{Q}_{2} - \hat{Q}_{1} \|_{1} \| \hat{V}_{1} \|_{1} \geqslant$$

$$\mu(\gamma_{1}) - H \frac{\gamma_{2} - \gamma_{1}}{\gamma_{2} - \gamma_{0}}.$$

So

$$\inf_{\hat{Q}_{2} \in \varepsilon(\gamma_{2}) \cap \varepsilon_{2}} \| \hat{T}_{1} - \hat{Q}_{2} \hat{V}_{1} \|_{1} \ge \mu(\gamma_{1}) - H \frac{\gamma_{2} - \gamma_{1}}{\gamma_{2} - \gamma_{0}},$$

which means

$$H\frac{\gamma_2 - \gamma_1}{\gamma_2 - \gamma_0} \geqslant \mu(\gamma_1) - \mu(\gamma_2).$$

Q.E.D.

Proposition 3.5 $\mu(\gamma)$ is a continuous function.

Proof $\forall \, \epsilon > 0$ and $\forall \, \gamma \in (\gamma_0, \infty)$, Since $\lim_{\delta \to 0} H \, \frac{\delta}{\gamma - \gamma_0} = 0$ and since $\lim_{\delta \to 0} H \, \frac{\delta}{\gamma + \delta - \gamma_0} = 0$, there must exist a $\delta^* > 0$ which satisfies

$$0 < H \frac{\delta^*}{\gamma - \gamma_0} < \varepsilon,$$

$$0 < H \frac{\delta^*}{\gamma + \delta^* - \gamma_0} < \varepsilon,$$

$$\delta^* < \gamma - \gamma_0.$$

From Proposition 3.4, the above implies $\forall \gamma_1 \in (\gamma - \delta^*, \gamma]$,

$$0 \leq \mu(\gamma_1) - \mu(\gamma) \leq \mu(\gamma - \delta^*) - \mu(\gamma) < \varepsilon$$

$$\forall \gamma_1 \in (\gamma, \gamma + \delta^*),$$

$$0 \leq \mu(\gamma) - \mu(\gamma_1) \leq \mu(\gamma) - \mu(\gamma + \delta^*) < \varepsilon.$$

Hence

$$\forall \gamma_1 \in (\gamma - \delta^*, \gamma + \delta^*),$$

$$|\mu(\gamma_1) - \mu(\gamma)| < \varepsilon.$$

Q.E.D.

4 Approximate analysis

$$\forall N \in Z_{+} \geq 0$$

define

$$\xi_N(\gamma) = \{\hat{Q} \mid \|\hat{T}_2 - \hat{Q}\hat{V}_2\|_2 \leq \gamma, \hat{Q} \in \mathbb{R}^{N+1}\}.$$

Since $\xi(\gamma)$ is nonempty, it is easy to see the following:

Proposition 4.1 $\forall \gamma \in (\gamma_0, \infty), \exists N_0 \in Z_+$ such that for any $N \ge N_0$ in $Z_+, \xi_N(\gamma)$ is nonempty.

For $N \geqslant N_0$ in Z_+ , the Nth truncated problem of (OPT) can be constructed as

$$\mu_N(\gamma) = \inf_{\hat{Q} \in \mathcal{E}_{\nu}(\gamma)} \| \hat{T}_{\perp} - \hat{Q} \hat{V}_{\perp} \|_{\perp}.$$
 (OPTN)

(OPTN) can be posed as

$$\mu_N(\gamma) = \inf \left[\sum_{k=0}^{m+N} (\Psi_+(k) + \Psi_-(k)) + \beta \right],$$

subject to

$$\Phi(j) = T_2(j) - \sum_{i=0}^{N} Q(i) V_2(j-i),$$

$$\begin{split} \Psi_{+}(k) - \Psi_{-}(k) &= T_{1}(k) - \sum_{i=0}^{N} Q(i)V_{1}(k-i) \\ \sum_{j=0}^{n+N} (\Phi(j))^{2} &\leq \gamma^{2} - \alpha, \\ \Psi_{+}(k) &\geq 0, \quad \Psi_{-}(k) \geq 0, \end{split}$$

where

$$k \in \{0, \dots, m+N\}, \quad j \in \{0, \dots, n+N\},$$

$$\alpha = \sum_{i=n+N+1}^{\infty} (T_2(j))^2, \quad \beta = \sum_{k=m+N+1}^{\infty} |T_1(k)|.$$

The above is a finite dimensional optimization problem which can be solved with many numerical optimization techniques.

Proposition 4.2 $\mu_{N_0}(\gamma) \geqslant \mu_{N_0+1}(\gamma) \geqslant \mu_{N_0+2}(\gamma) \geqslant \cdots$ and

$$\lim_{N\to\infty}\mu_N(\gamma) = \mu(\gamma).$$

Proof $\mu_{N_0}(\gamma) \geqslant \mu_{N_0+1}(\gamma) \geqslant \mu_{N_0+2}(\gamma) \geqslant \cdots$ is the direct result of

$$\xi_{N_0}(\gamma) \subset \xi_{N_0+1}(\gamma) \subset \xi_{N_0+2}(\gamma) \subset \cdots$$

Since $\forall N \geqslant N_0$ in Z_+ , $\xi_N(\gamma) \subset \xi(\gamma)$, it follows that $\mu_N(\gamma) \geqslant \mu(\gamma)$. Applying Proposition 3.5, $\forall \varepsilon > 0$, there exists a $\delta > 0$ such that

$$\mu(\gamma) + \frac{\varepsilon}{3} > \mu(\gamma - \delta) \geqslant \mu(\gamma).$$

Since $\mu(\gamma - \delta) = \inf_{\hat{Q} \in \mathcal{E}(\gamma - \delta)} \| \hat{T}_1 - \hat{Q}\hat{V}_1 \|_1$, one can find $\hat{Q}' \in Rl_1$ such that $\| \hat{T}_2 - \hat{Q}'\hat{V}_2 \|_2 \leq \gamma - \delta$ and $\mu(\gamma - \delta) \leq \| \hat{T}_1 - \hat{Q}'\hat{V}_1 \|_1 < \mu(\gamma - \delta) + \frac{\varepsilon}{3}$.

Choose positive integer N such that

$$\|\hat{Q}''\|_{1} < \min\left(\frac{\delta}{\|\hat{V}_{2}\|_{1}}, \frac{\epsilon}{\|3\hat{V}_{1}\|_{1}}\right),$$

where

$$\hat{Q}'' = \hat{Q}'(N+1)\lambda^{N+1} + \hat{Q}'(N+2)\lambda^{N+2} + \cdots$$

Then

$$\begin{aligned} & \| \hat{T}_{1} - (\hat{Q}' - \hat{Q}'') \hat{V}_{1} \|_{1} \leq \\ & \| \hat{T}_{1} - \hat{Q}' \hat{V}_{1} \|_{1} + \| \hat{Q}'' \|_{1} \| \hat{V}_{1} \|_{1} < \\ & \mu(\gamma) + \varepsilon \end{aligned}$$

and

$$\begin{split} & \parallel \hat{T}_{2} - (\hat{Q}' - \hat{Q}'') \hat{V}_{2} \parallel_{2} \leq \\ & \parallel \hat{T}_{2} - \hat{Q}' \hat{V}_{2} \parallel_{2} + \parallel \hat{Q}'' \hat{V}_{2} \parallel_{1} \leq \gamma. \end{split}$$

Notice that $\hat{Q}' - \hat{Q}'' \in \mathbb{R}^{N+1}$. Hence

$$\mu(\gamma) + \varepsilon > \| \hat{T}_1 - (\hat{Q}' - \hat{Q}'') \hat{V}_1 \|_1 \geqslant$$

$$\mu_N(\gamma) \geqslant \mu_{N+1}(\gamma) \geqslant \cdots \geqslant \mu(\gamma),$$

which means $\lim_{N\to\infty} \mu_N(\gamma) = \mu(\gamma)$. Q.E.D.

5 An example

In this section we illustrate the theory developed in the previous sections with an example: Given $\hat{T}_1 = 10\lambda + 5\lambda^2$, $\hat{T}_2 = 10 + 5\lambda$, $\hat{V}_1 = 4 + 4\lambda + \lambda^2$, $\hat{V}_2 = 2 + \lambda$ and $\gamma = 8$, find $\hat{Q} \in Rl_1$ such that $\|\hat{T}_1 - \hat{Q}\hat{V}_1\|_1$ is minimized and $\|\hat{T}_2 - \hat{Q}\hat{V}_2\|_2 \le \gamma$. Table 1 summarizes our calculation results. From Table 1, we can see $\mu_0 \ge \mu_1 \ge \mu_2 \ge \cdots$ and μ_N converges to 4.1834 with the increasing of N as Proposition 4.2 shows.

Table 1 Calculation results with different N

N	0	1	2	3	4
μ_N	12.5000	7.2255	4.9723	4.3407	4.3407
N	5	6	7	8	9
μ_N	4.3407	4.3407	4.2614	4.2384	4.2131
N	10	11	12	13	14
μ_N	4.2055	4.1933	4.1909	4.1865	4.1852
N	15	16	17	18	19
ILN	4.1843	4.1840	4.1836	4. 1835	4. 1835
N	20	21	22	23	24
ILN	4.1834	4.1834	4.1834	4.1834	4.1834

References

- 1 Shu H and Chen T, State space approach to discrete time H_2 optimal control with a causality constraint. System and Control Letter, 1995, 26(1): 69-73
- 2 Dahleh M A and Diaz-Bobillo I J. Control of uncertain systems; a linear programming approach. New Jersey; Prentice Hall, 1995
- 3 Kaminer I, Khargonekar P P and Rotea M A. Mixed H_2/H_∞ control for discrete time systems via convex optimization. Automatica, 1993, 29(1): 57-70
- 4 Sznaier M and Bu J. On the properties of the solutions to mixed l₁/H∞ control problems. Proceedings of 13th 1FAC Congress, San Francisco, USA, 1996, Vol. G; 249 254
- 5 Voulgaris P. Optimal H₂/ l₁ control; the SISO case. IEEE Proc. Decision and Control, Orlando, USA, 1994, 4; 3181 – 3186
- 6 Voulgaris P. Optimal H_2/l_1 control via duality theory. IEEE Trans. Automat. Contr., 1995, 40(11): 1881 1888
- 7 Wu J and Chu J. Mixed H₂/ l₁ control for discrete time systems. Proceedings of 13th IFAC Congress, San Francisco, USA, 1996, Vol. G;453 457
- 8 Salapaka M V, Dahleh M and Voulgaris P. Mixed objective control synthesis; optimal $t_1/\rm H_2$ control. Proc. Amer. Contr. Conf., Seattle, USA, 1995, 1438 1442

本文作者简介

吴 俊 1967年生.分別于 1989年和 1994年在华中理工大学工业自动化专业获学士和博士学位,1994年至 1996年为浙江大学工业控制技术研究所博士后,现为浙江大学先进控制研究所副研究员,主要研究兴趣是鲁椿控制和计算机控制.

褚 健 见本刊 1999 年第 3 期第 344 页.