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Mixed Scalar /,/H, Problem for Discrete Time Systems "
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Abstract: A discrete time [, control design problem involving a constraint on H, performance is formulated and an upper
approximation method for the solution of this infinite dimensional optimization problem is introduced . Suboptimal solutions of the
problem can be obtained by solving a sequence of truncated problems. The continuity property of the optimal value with respect
to changes in the H, constraint is studied.
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1 Introduction

For the Linear Shift Invariant (LSI) systems, the
fundamental differences between H, control design and /;
control design can be traced to the modeling and treat-
ment of uncertain exogenous disturbances' ') . The object
here is to consider the simultaneous treatment of both H,
and [, performance criteria. The design of controllers to
such as mixed
H,/H. control, mixed [; /H, control, mixed H,/ [,

satisfy mixed performance criteria,
control has recently been the focus of researchers® 7',
For SISO control systems, mixed [;/ H, problem of mini-
mizing the /; norm of the closed loop map while main-
taining its H, norm at a prescribed level was addressed
and studied in [ 8]. This paper intends to consider the
general mixed [,/ H, control problem, i.e. to minimize
the /; norm of a closed loop transfer function, subject to
an inequality constraint on the H, norm of another closed
loop transfer function.
2 Problem formulation

Let ! denote the field of real numbers, " denote
the - dimensional real vectors, C denote the field of

complex numbers, Z, denote the nonnegative integers. A

causal SISO LSI transfer function ¢ can be described as
= G(0) + G(DA + G(2)A* + -, G(k) €
As G can be represented uniquely by its impulse response
sequence
[¢(0),6(1),6(2), ",
G and its impulse response sequence are not differentiated
in notation through this paper. Define

I =1616¢ =GO+ (DA +,6(k) €1},

L=16€ 1,1 >,(Ck))?* < of,
b=0
L=16el1>)16k) 1< wl,
k=0

2 g o . )
is a ralional (unclion of Ay,

R, =lC€ LG

Rl, = Rl, =N 1.
For any G € 1, ,the {,-nomm of G is given by
TGNy = 201 6(k) 1.
k=0

For any Gy, 6 'E {5 ,the inner product of G, and G, is
given by

<(A;]g(/;‘2> = ZG.(A)GZ(k)

k=0
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Then £, is Hilbert space,and ¥ G € [, ,the [,-norm of
G is

1G112 = v<E.T) =, 23 (60
k=0

G , is also the Hy-norm of G .

The mixed [, /H, control problem can be stated as:
Given TJ,Tz,f/l, f/z € RIl, and a constant Y , find
() € RI, such that || 7, — OV, |, is minimized and
I T, - @f/z | ,< 7 .Define

Ey) =10 € R | T- 00,1, < 7l
and

Yo = Oieﬂ,fll | Tz o Of/z I,
obviously, £(y) is nonempty when ¥ > ¥, .The mixed
[,/H, problem is described as
pn(y) = oeiﬂ}(fy) |7, -0V, II,.  (OPT)
It is easy to see that ;(¥) is a decreasing function.
Throughout this paper, there are the following assump-
tions ;

a) 7 € (70, %).
b) f/l :AI"-}—V](H'L - ])Am,—l+

T[(/\ = A’> e ‘3‘m+]‘
i=l

This assumption is not restrictive and is made to stream-

' +V1(0>=

line the presentation of the paper. For

R P Am—l .
/| : + Q- . 7|+ + Qg 6_ Rl],
bAT + by AT+ 1 by
e hav
“on - 07 -
(» __,,Q_,f,,,, (AW + Q. IAI” l . (l()).

AT + 0+ by
Obviously, the denominator part of Vi c

into Q.
C) A = MI,...

unit disk in € . When there is one element of { A,

can be absorbed

A c D, where D is the open

A, 1 on the unit circle, we say the problem is singular.
The singular problem is difficult to be solved and still an
open problem now. This paper only deals with the non-
singular problems.

d) Vy = A"+ Valn = DA™ w0 4 ¥V,(0) €

! Similar to Assumption b), the denominator part

of ¥ can be absorbed into O .

e) There exists a Oy € RI, such that

[ Tz - Oof/z [ 2 = inf | Tz = @Vz [ 2 = Yo.
den,
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3 Continuity
Let M = || Tl - OOVI |, +1, where Onis defined
in Assumption e) . Obviously, Qo € £(7) and

Oéré}(fy) N7 -Qvilly < M.
Define
=10er T -0V, <M
Obviously,
f 17, -0V ll,= inf T, -0FI,.
OHEl || -0 1“1 OG;(I}I’)QEI “ I Q 1”1
Define
A I Tl + M
) = OGRZ[ ||QH|SHI ) }
[ | Tlm—l
Proposition 3.1 &,  §,.
Proof Space C, is defined as
G(0) .
[6; G=| G(1) DUGE) 1<, G(k)ec].
. k=0

For any G G C, ,the C-norm of G can be given

by | Gl = ‘_, 21 G(k) 1. Obviously, I, is a subset

k=0
of €; and Crnomm in [, space is exactly /- norm. With

C\-nom, for any O € &, , it follows that
I+ M= W00+ 0T =001 =

m

|| Of/] |||2 ” [T(;\ —Ai)OHIB

"

WAH<A~A>0HJ—H—A.H(A—A)OHIB

mn

(L =12 Dl ]T(A—Ai)0||1>

[Ta-ra00Q10,.
i =
The above means that
) i M
10 ” e M kD,
Ha-ran
Proposition 3.2 inf | 7, - OV, |, =
) o QEEy)
inl [T, =0V, |, =pu(y).

otswme?
Proof Since £(7) N & c &(7) ,

o o _ PN T B AA )
oy 1 P = Ol dnd I T - OB

On the other hand, from Ploposmon 3.1, we have

ol 119 - O YR AN
peltho T -l it T - R,

Hence
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inf || 7, - QV S
(;)g’;(y) [ 1= V) || 1= O
ol P . 4 Ao Y- 7
f 7, 7, - .
Oeel(r;)ne, 12 - Qnily ogeel(ng)nez 17 =@Vl 2wy - H Y270’
inf T =00 . which means
PENNE,
Vo’
Thus H ),22 yl = (7)) = (7).
inf |7, -0V, I, = inf T, -0V, | ..
QEEY) Qestnne, Q.E.D.
Q.E.D. Proposition 3.5  ;(y) is a continuous func-
Proposition 3.3 Given 75 < 7, < 73 < @, tion
then for any (0, € £(7,) () & , there exists a Q, € Proof Ye > Oand V7 € (¥y,%), Since
A Rl et limH = 0 and lim H 0 -0
)’z —y N7+ M o Y = Yo and since gy Tor=—tyy - SR

||Ol—02|||$ ~ %
IT SR
Proof From Assumption e and Proposition 3.1,

we can conclude that there exists

Qo€ &(y) N & c &(y) N &.

_ 'y N A P

Letp = 72*_ y(l) and O] = 1000 + (1 bl p)Q;
Obviously p € (0,1) and O, € &(y,) ) &, . Next,
10, - 0.1, < ||(P@0+(1—p)@2>—<)2||1S

ol Oolly + 10, 1)) <

272—71 | T1“1+M
Y
! ﬂ(l =0 o
Q.E.D.
Proposition 3.4 Given ¥y < 7, < ¥, < o and
= i T - OV, |
n (7)) oee}?lfmez 7, -0V 1,
n(72) = 066}17121)052 I T - QV, I,
then
Yo7
H 722 N 71) = (7)) ~ p(72) =0,
where
0o | v Vil Il 1||1+M)
H(l i
Prool  p(7;) - /z(}’z) = 0 is the direct result of

the fact
E(7) N &> E(r) N &,

From Proposition 3.3, Y 0, € £(7,) ) &, , there
exists a 0, € &(¥,) N &, such that

17 - 0Vl =
T -0l = 10, = 00l IV Il =
Yoz
Y2~ Yo

w(y) - H

there must exist a 8~ > 0 which satisfies

0<H}/78_”—<e,

Yo
0 Mol <e,
Y+38" - 7
S <Y =7

From Proposition 3.4, the above implies ¥ 7, € (¥ -
8, vl
0< n(y)-puly) <
and
vre (r,y+67),
<u(V) - p(r) s p(y) —p(y +87) < e.

Hence

p(r-8")-pu(y) <e

Vrnelr-6,r+8"),
Lpe(r) — () I < €.
Q.E.D.
4 Approximate analysis
VNE Z,=0
define
E(Y) =101 I Ty - Oy ll, < 7,0 € M.
Since £(7) is nonemply, it is easy 1o see the following:
Vrye (ro,®), AN E Z,
Noin Z, ,&y(y) is nonempty.
Nyin Z, , the Nth truncated problem of

Proposition 4.1
such that for any NV =
For N =
(OPT) can be constructed as

() = . 111f || T -0V . (oPIN)
(OPTN) can be posed as
() = inl Sy (T, (B) + % (8)) + A1,
subject to -
i

O(7) = 1) = 200V, = 1),

.
240
1=0



No.6 Mixed Scalar [, /H, Problem for Discrete Time Systerns 913

W, (k) - W_ (k) = T,(k) = >, 00)Vi(k - i)

=0
:11/;/
2(0(NP <P -a,
j=0
v, (k) =0, ¥ (k)=0,
where

kef()y'“a’n"‘Nl, je%o,"',n,+N},

a= 2, (B(DP, B= 2
k=m+Nel
The above is a finite dimensional optimization problem

| T, (k) 1.

J=n+ N+l

which can be solved with many numerical optimization
techniques.

Proposition 4. 2 ,1N0( Y) = 1A () =
inea7) 3 v+ and

lim ey (7) = (7).

Proof ey (V) = e 1 (V) = py2(¥) = o0 is

the direct result of
5;\¢()(7) @ SNOH(V) C 5/\9042(7) c .

Since Y N = Nyin Z, ,&y(y) c €(y) ,it follows that
un(Y) = p(¥) . Applying Proposition 3.5, Ye >0,

there exists a 0 > 0 such that

p(7) + *% > ply =8) = (7).

Since ;2 (y - &) inf N 7 - OV, I, one can

Q¢ ely-a

find O € RI, such that || 75 - O'f/z l, <7 - 6and

wlr-8 < 1T - 07l </z(7—6)+%,

Choose positive integer /V such that

o1 NGl ,,,__.)
I Q H; < mm( | Vz” . ||3V1 ||] s

where
O = O'(N + DAY 4 O/ (N + 242 4 -
Then
” i,] - (O - (:)””/1 || =
7y =0 o+ 1O I Pl <
/t()’) 1€

and

| 712 - (Q . (A)")f/z ||z =
| 7‘2 - 0,% [ ) =+ [ (’i)”f’/z I < 7.
Notice that ' — Q" € | ¥*'. Hence
p()+es> P -0 -0 =
(Y =g (V) = = 1Y),
Q.E.D.

which means %in_l (7)) = pn(y).

5 An example

In this section we illustrate the theory developed in
the previous sections with an example: Given T = 104
+5220, T = 10450,V =4 +41 + 2%V, =2+ 2
andy = 8 ,find 0 € R, such that || 7, — OV, || | is

7‘2 = (:)f/z I 5 < Y. Table 1 summa-

=

minimized and |
rizes our calculation results. From Table |, we can see 1
= ¢ = ¢y = - and py converges to 4. 1834 with the

increasing of N as Proposition 4.2 shows.

Table 1 Calculation results with different NV
N 0 1 2 3 4
ey 12,5000 7.2255 4.9723 4., 3407 4.3407
N 5 6 7 8 9
py o 4.3407 4, 3407 4.2614 4.2384 4.2131
N 10 1l 12 13 14
/o 4.2055 4.1933 4, 1909 4. 1865 4.1852
N 15 16 17 18 19
sty 4.1843 4.1840 4.1836 4.1835 4.1835
N 20 2] 22 23 24
py o 4.1834 4.1834 4, 1834 4.1834 4.1834
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