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Abstract. An artificial neural network (ANN) for gas tungsten arc welding (GTAW) process modeling and control is
presented in this paper. The discussion is mainly focused on the use of ANN for the weld parameter modeling and its application

for the control of the weld pool depth. The effectiveness of the proposed intelligent methods is demonstrated by the real experi-

ments. The weld modeling method using ANN yields conspicuously improved performance.
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1 Introduction

Weld modeling is very important to the mechanics
of welding process and how it can be best controlled and
utilized . However, the control of the overall welding pro-
cess is not easily accomplished, largely due to the inade-
quacy of the available process models. The arc welding
process that is subject to numerous influencing factors
such as arc flare, welding fumes, and spatters is substan-
tially nonlinear. Generally, some variables affecting
welding quality can not be quantified, for example, spat-
ters, workpiece heat absorption, contamination, etc. All
this perplexity results in the difficulities of designing re-
liable welds.

Without exception, most welding control methods
are based upon the analytical welding models. Based up-
on these mathematical models welding controller can be
designed which is associated with different optimization
criterial! 3!, Although these models are derived directly
from the physical laws that govern the main features of

the weld pool, a number of assumptions are made to ob-
tain the mathematical solutions due to the complexity of
the welding process. Various parameters are only approx-
imately known, such as the arc heat distribution and effi-
ciency, while others such as the pool circulation varia-
tions in thermal properties are ignored. In such cases
control concepts based on analytical models can only
provide insufficient performance and poor robustness.
2 Weld modeling neural networks

GTAW is used to exemplify modeling of a welding
process using a neural network. An arc is initiatied and
sustained between a pointed tungsten electrode and the
surface of the welded workpiece. Argon is conducted
coaxially down around the arc and thus it shields the
molten weld pool from the atmosphere. GTAW is a com-
plicated and multi-energy domain process which is essen-
tial to many types of manufacturing. Weld quality fea-
tures such as final metallurgy and mechanics are not
measurable on-line for control, thus some indirect ways
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of controlling the weld quality is necessary. A compre-
hensive method to in-process control of welding includes
both geometric features of the bead such as the width,
depth, and height and the thermal characteristics such as
the heat-affected zone width. These features are illustrat-
ed in Fig.1.The physical geometry of the molten pool is
a major factor in determining the structural adequacy of
the weld. The penetration depth of the weld pool, the
bead width, the transverse cross-sectional area, and the
height of the reinforcement, which characterize the fin-
ished weld, are usually referred to as direct weld parame-
ters. The direct parameters are governed by lots of factors
such as welding current, welding speed, torch tip angle,
and shielding gas type and flow rate which are referred
to as indirect weld parameters, The objective is to select
and control the indirect parameters to obtain some de-
sired direct parameters. An approach to keep the weld
pool depth constant by controlling some indirect parame-
ters is discussed next.
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Fig. 1 Diagram of the weld pool

The weld pool depth in the joining part is one of
most important factors to determine the mechanical
strength . Generally, it is difficult to directly observe the
weld pool depth with a CCD camera. A practical ap-
proach to estimate the pool depth is to use a reliable
model of the weld pool describing the pool geometry.
Here, the neural network is used to describe the weld
pool depth. The depth is estimated by using the informa-
tion obtained from the surface shapes of the weld pool,
the state of the heat input, which corresponds to the
welding current, and the state of the seam gap.

When the base metal melts to the back side, the
back bead generates. The width of the back bead be-
comes wide when the pool depth becomes deep. The typ-
ical image of the weld pool surface is shown in Fig. 2
with the CCD camera. The pool width W at 2.25mm be-
hind the torch and the seam width G are measured by
processing the image . Usually, the heat input to the metal

becomes big and weld pool becomes large when the

welding current increases. The weld depth becomes deep
as the seam gap increases. The variation of the welding
current, the seam gap, and the pool width are used to de-
scribe the dynamical system of the weld pool depth.
These dominant factors of the weld pool depth are used
as the input of the neural network. Fig. 3 illustrates a
three-layer feedforward neural network which is used to
model GTAW pool depth in terms of the welding cur-
rent, the seam gap, and the pool width.

— Pool depth

Fig. 3 A neural network used for GTAW modeling

The width of the seam gap under the torch can not
be directly measured, since the molten metal fills the
seam gap. The width G, of the seam gap at 18.5mm
before the torch, where k is the number of sampling, is
measured. The width G; 4, is stored into the memory of
the controller. The width G, of the seam gap just under
the torch is obtained by using the stored width of the
seam gap.The width at the sensing point W corresponds
to Gj_g. According to the results of numerous experi-
ments, the variation of the width W in 0.5s is found to
be adapted as the information of the variation of the sur-
face shape. The values of the width W per sampling peri-
od are given to the neural network: W,, W, , -,
W, _g, where k is sampling iteration and the sampling
period is 1/18s (55. 6ms) . Also, the variation of the
welding current and that of the seam gap are used as the
input of the neural network;
G155 Gy _g.

The neural network is trained by using back propa-
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gation method. The learning rate (77) and the momentum

term (a ) are 0.5 and 0.9 respectively. The training data
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are constructed from the relationship among the surface
shape of the weld pool, the seam gap, the welding cur-
rent, and the weld pool depth in the steady state and the
transient state. From the experiments, the weld pool
depth of 3. 6mm corresponds to the case in which the
base metal is through down. Here, the thickness of the
base metal is 2mm. The output of the neural network is
chosen from Omm to 3.6mm. The number of units at the
hidden layer is decreased while the training error be-
comes below 3.3 % . The resultant number of the units in
the hidden layer is 7.

Compared with other modeling methods , neural net-
works have conspicuously better performance. If the con-
ditions for the neural network are general enough, by
spanning the entire range of GTAW process parameters,
the resulting model will capture the complexions of the
process including nonlinearities and parameter cross cou-
plings . Undoubtedly , model development is much simpler
than most other models. Instead of theoretical analysis
and development for a new model, the neural network
tailors itself to the training data and calculates its result
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relatively quickly, since the input data are only propagat-
ed once through the network in the application mode.
3 Experimental results of controlling the

pool depth

The pool depth controller which is depicted in
Fig.4 is performed on a HFGZ-XY welding equipment.
The two base metals are joined by carrying out the
GTAW . The CCD image sensor detects the welding pool
and the seam gap. A narrow band optical interference
filter centered on a definite frequency blocks most of the
ambient and welding arc light. A gradient algorithm is
used to process the weld image obtained by CCD and to
recognize the width of the pool and seam gap. The weld-
ing conditions are shown in Table 1.

Fuzzy Deluzzid Welding
Inference fication
d Au u +
CCD

(;i iil i

Neural network

2]

Fig. 4 Control scheme of the pool depth

Table 1 Welding exprimental conditions
Welding speed  Plate thickness Pool depth Ref.  Welding current ~ Argon flow Gap width
Seam shape ;
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Fig. 5 Experimental results

As shown in Fig.4, the uneural network procedures
the weld pool depth D, Dy, is the desired pool depth and
e is the deviation between D and D). The error e is cal-
culated from the output of the neural network. The ma-
nipulating variable Ax is inferred from the e and the error
change Ae. Fig.5 shows the welding result. It can be

obviously seen that the weld pool depth is about con-
stant. The welding current changes according to the fluc-
tuation of the width of the seam gap. When the width of
the seam gap becomes narrow, the welding current is in-
creasing. On the other hand, when the width of the seam
gap becomes wide, the welding current is decreasing.
The strong robustness is obtained. The base metal,
whose shape of the seam is related to the “S” curve line
after welding,is shown in Fig.6. The experimental results

i

Fig. 6 The base metal after welding

(Continued on page 927)
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judge the existence of the flaw but also can estimate the
position of the flaw approximately .
4 Conclusion

In this paper, a new multisensor data fusion based
on fuzzy logic architecture for NDT is presented. The
ways to decide the membership functions and the opera-
tors of fuzzy logic are given. The architecture introduced
is being used now. It also can be used in other fields.
This research can be improved by adopting the neural
network to decide the weight automatically .

References

| Gibon R E and Hall D L. An autonomous fuzzy logic architecture for
multisensor data fusion. Proceeding of the 1994 TEEE Conference on
Multisensor Fusion and Integration for Intelligent Systems, Las Vegas,

(Continued from page 923)
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