16 5% 6
1999 4 12 B

2 0 I8 5 N
CONTROL THEORY AND APPLICATIONS

Vol. 16,No.6
Dec.,1999

Convergence of the Forgetting Factor Algorithm
for Identifying Time-Varying Stochastic Systems
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Abstract; In the paper [1], the authors established the convergence properties of the forgetting factor algorithm for time-

varying systems. In this note, we; 1) Point out the errors in the proof of convergence; 2) Show the upper bound and lower

bound of convariance matrix of recursive forgetting factor algorithm (RFFA); 3) Provide a correction of convergence properties

of the algorithm presented in [1].
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1 Introduction
Parameter identification problems have been re-
ceived great attention from many researchers for many
years. As we know, the recursive least square (RLS)
algorithm with forgetting factor is often used to identify
time-varying systems because of its good robustness. In
[1], the convergence properties of the RLS algorithm
with forgetting factor were presented. However, there
are some errors in that paper as following:
1) A key result is used to obtain Eq.(4) in [1].
That is
ml < () (1) < MI. (1)
According to algebra, for any vector ¢(t), we
have
rank (@ () 0"(1)) <
min{rank(go(t)),rank(goT(t))} < 1.
(2)
Clearly,Eq. (1) is wrong. This leads to the wrong
results in that paper.
2) On pp.637, “For the time invariant stochastic
systems: i) PEE (parameter estimation error) given by

RLS algorithm converges to zero under the mean square

. . 1 ”
sense, and its convergence rate is of («/_? . The con-

Manuscript received Mar. 18,1996, revised May 28,1999,

vergence rate should be (%) .

3) On pp. 637, “the mean square PEE given by
RLS algorithm is unbounded” . As will be pointed in Re-
mark 2 of Section 3, the upper bound of the mean square
PEE provided by the ordinary RLS algorithm tends to in-
finity, but it doesn’ t mean the PEE is unbounbded.

In this note, we first show the upper bound and
lower bound of covariance matrix of forgetting factor al-
gorithm, Then, we further provide the correction of
convergence properties presented in [ 1] on RFFA for
time-varying stochastic systems.

2 System model and the algorithm

We consider a single-input and single-output
(SISO) system represented by :

y(t) = " (£)0(1) + v(1), (3)
where o(t) = [- y(t - 1), — (¢ = 2),,y(¢ -
ng),u(t=1),ult=2),,ult - ny)]"is system in-
put-output regression vector, 9(t) = [a;(t),as(t),
oy (0,00(0), by (8) 0, b, ()], s
time-varying unknown parameter vector and to be
identified, y(¢) and u(¢) are observable output and input

system
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sequence of the system, respectively. v(t) is the system
stochastic noise sequence.
The forgetting factor algorithm employed to identify
6(t) can be described by the following equations:
Bt +1) =0(t) + P(t+1) -
() y(1) - e ()0()], (4)
Pt +1) = aP7'(1) + o()"(t), (5)
where A € (0,1) is the forgetting factor, P(1) = el is
a positive definite matrix, and 8(1) is arbitrary. 6(¢)
denotes the estimate of the parameter (¢). When A = 1
in the above equations, we have the ordinary RLS algo-
rithm.
3 The convergence of the algorithm
As a preliminary to the main result, the definition of
the persistent excitation is given. Then we show that if
'(¢ + 1) is bounded.

The measurement vector sequence

{@(1)} is persistently exciting, P~

Definition
{o(2)} is said to be persistently exciting, if for some
constant integer s and all & there exist positive constants
m and M such that '

k+s

Zgo(])go () <

If the measurement vector of the sys-

0< ml < Ml < o. (6)

Lemma 1

tem sequence { ()} is persistently exciting, then for

all n=1,
ABPI(E) + 4 (11__; }'m-.-" <
P '(ns + i)
A"S
np-l ——MI 7
A (i el = (7)
or
A=)
o) + e M <
pHns +i) < 0(A") + 11——)1‘;MI (8)
where ]l < i < s — 1.
As n—> @
s o )
1~;tsmlsP (ns+l)s1_A5MI (9)
or
1 - A . 1-2A°
N IsP(ns+L)s Y 1. (10)

Proof From (1), we obtain that
P'(ns+i) =AP [(n-1)s+1i]+

DAl (n = s+i+jle"
=

[(n=Ds+i+jl (11)
Also, from (6) and 0 < A < 1
NP (n=-Ds+il+2ml <
P l(ns + i) < AP 1[(n—l)s+t]+M] (12)
Soforn = 1

P'(ns +i) <AP U (n-1Ds+il+M <

(n-1)s
AMPL(E) + > APMI =
j=0
A"&
lyr=m)

Pl(ns+ 1) =AP H{(n-Ds+il+Adml =

ARP1(i) + D Aml =

j=0

mPl()+ MI,

AL = 2A™)

n.sPI
AR e e

mil.

As n — o, the result follows.

Remark 1 According to [2], {@(:)} can be
guaranteed to be persistently exciting if the system is
controllable and observable.

Lemma 2 If the measurement vector sequence of

the system {@(t)| is persistently exciting, and

lim %Ego(j)goT(j) exists, then
[2mdcd j=1

0 < ‘—I <hm

IZ¢(1)¢T(1)

j=1

ELp()e" ()] < < . (13)
Proof Lett = ns +i(0< i< s—1), then
< zqo(,)go () —ﬁ—lz(p(,‘w(;‘) <
nsl+ (n+ DM,
| LN L
02 (D' () = LZMD(J)SDF(J)
ﬁ”nml.

Ast—> o, i.e. n— o, we can obtain
S S :
2 <lim = 2, 9()¢"() =
® j=1

Ele(Ne" (D) <, (14)

it proves Lemma 2.
Based on Lemma 1 and 2, we now present our main re-
sults.

Theorem 1 For time-varying system, if the fol-
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lowing conditions hold
1) The measurement vector sequence |@(:)} is
persistently exciting, and lim %zt: o(j) @(j) exists;
Otg =1
2) The noise sequences v ( ts is an independent ran-
dom variable with zero mean and square bounded, i.e.
Ele(De(k)] = Suo® < =,
0, k=l
Ou = {1, k= 1.
3) The parameter change rate o (¢) = 6(t) — (¢
- 1) is bounded, «(t) and v(¢) are independent, i.e.
Ela()I*?< M < =,
E[a(k)v(1)] = 0,
then under mean square sense, the PEE given by RLS
algorithm with forgetting factor converges exponentially
to a region, i.e. ast — %
ms®(n, + ny)(1 = A°)?
sM*(1 - A)?
Mo*(n, + ny)(1 = A°)? MM,
sm2A% (1 - 1)? % mAAB(1 - A)%

Theorem 2 For time invariant system, if Condi-

S__E”ITG(."-E- |)||15

(15)

tion 1 and 2 hold, then under mean square sense, the

PEE provided by RLS algorithm with forgetting factor

converges exponentially to a region, i.e. as t —

@2(_n_a_+ ny) (1 = A%)? _

sM2(1 - 2)? =

M 2 i i 1- 28 2

o guz-;nf)( i )? (16)
smiA%(1 = Q)
As the further results of the above theorems, we can ob-

EloG:+1)?%<

tain the following corollaries .
Corollary 1
limv(¢) = 0 and the Condition 1 and 3 hold, then un-

t—> o0

der mean square sense, the RLS algorithm with forgetting

For time-varying system, if

factor converges exponentially to a region, i.e. as >
M*M,

B o PG 17

m2 ) 2s ( 1-2 )2 ( )

For time-invariant system, if

EN6Ct+1) %<

Corollary 2
limv(¢) = 0 and Condition 1 and 2 hold, then under

o

mean square sense, parameter estimate provided by the
forgetting factor algorithm converges exponentially to the
true value of the system parameter.

Corollary 3  For time invariant stochastic sys-
tem, if Condition 1 and 2 hold, then the parameter esti-

mate provided by the recursive least square algorithy

; 1 g
converges to a region at rate of ( FYERSAER S t—>
mso*(n, + ny)
=
M2

- Msc?
Ell@(t+1)|l2si(nn:2ﬂ- (18)

Corollary 4 For time invariant stochastic sys-
tem, if limy(¢) = 0 and Condition 1 and 2 hold, then

the parameter estimate provided by the recursive least
square algorithm converges to one point 8 (the true value

of the system parameter) at rate of ( %) .

The proof of the theorems and corollaries are simi-
lar as those in [1], and are omitted here.

Remark 2 For time-varying systems, let A — 1,
from (15), we can find the upper bound of the parame-
ter error caused by parameter variation tends to infinity.
This shows that the upper bound of the parameter error
provided by the ordinary recursive least square algorithm
can not be given, but it doesn’ t mean the PEE is un-
bounded.

4 Conclusion

The main results in this note show the upper bound
and lower bound of covariance matrix of RFFA, and
demonstrate that the parameter estimate obtained by RFFA
for both time-varying and time invariant stochastic sys-
tems converges exponentially to a region provided that
{o(t)} is persistently exciting. Furthermore, it is also
proved that the parameter estimate given by the ordinary
RLS algorithm for the time invariant systems in presence

of noise converges to a region at rate of (%) . Thus,

these give a correction of the results presented in [1].
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