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Abstract; This paper considers the parameter estimation and adaptive stabilization problems for
linear discrete-time systems with unknown parameters and bounded isturbances. The a-priori know-
ledge for designing adaptive controllers is only the order of the system. No assumption is required ex-
cept controllability and observability of the system. The excitation signals are deterministic, and
hence, no external stochastic excitation signal is applied. '
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1 Introduction
Consider the linear single-input single-output discrete-time system
A2y, = zB(2)u, +w,, Y220, a.n
where y.,u, and w, are the system output, input and unknown disturbance, respectively, A(z)
and B(z) are polynomials in backward shift operator z

A@ =1+amz+ - +a2, p>0, %0, (1.2)
B(z) = b+« + 8271, g=1, b#0 | .3

and ‘
0=[—a - — @, by e b,,]T 1. 4)

is the unknown parameter of the system. The disturbance w, is of arbitrary nature. deterministic

or stochastic. Assume that {w,} satisfies the following long run average condition

1 34
supn—_l_—lzw}<oo, 1.5)

2=>0

j=0
or satisfies the more restrictive condition

sup |w, | << oo (1.6)

a0
The problem of adaptive stabilization consists in designing control aiming at stabilizing the
System with unknown parameters. For system (1. 1) with w, =0, the problem was discussed in
[1~4:| and others. When w, is not identically equal to zero, the problem is usually solved under

Conditions more than coprimeness of A(z) and zB(z), which as well-known is sufficient for non-
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adaptive stabilization [5~ 8]. To the authors’ knowledge, under the coprimeness condition only,
the problem has first been solved in [9] for system (1. 1) with {w,} being a martingale differ-
ence sequence. As in many previous works summarized by Chen and Guol'¥], the excitation sig-
nals used in [9] are stochastic processes, which, genera'lly.speaking, are more difficult to deal
with than deterministic ones. ‘

In this paper, under the assumption that A(2) and zB(z) are coprime, we give adaptive con-
trols via deterministic excitation signal such that

sup +1,_21(y?+u,)<oo , a.n
for the case where (1.5) holds and
s.;g(ly-l + u]) < oo . 1. 8)

for the case where (1. 68) is satisfied. .

. #
Through out the paper, for a polynomial X (z)= 2235. , thenorms || « flyand || « |,
are defined as follows k
»
1x@ 1= Z sl and | X@ 2= ( X 1=l2) "
=0

2 Estimation and Adaptive Control
We estimate the unknown parameter § by the LS algorithm which recursively defines.the es-
timate 4, as follows;

Ouy1 = Op + PP(¥rs1 — B0 @.n
P,ii = Py — mPp.@iPss = (1 + @iPp) ™" (2.2)
og=[n o G w u.-q+1:| ‘ 2.3)
with Py=1 and arbitrary initial value
B=[—ao = —ap by - b0 -
For any n>0 write 6, in the component form
' =[—an = —au b - baul @.4)
If A(z) and zB(2) are coprime, then there exist two polynomials
GG =1+ ’Zlg,-zf, H(z) = 'leh,-zf, .5
such that . = )
A(2)G(z) — zB(2)H(z) = 1. (2. 6)

Replacing i, ‘bjs gas he by their estimates i, bu, gm and ha respectively in (1. 2), (1. 3)
(2.5), i= 1, ,py j=1,e0,q, k=1,e0,q—1, s=0,-,p—1, we correspondingly denote
A(2), B(z), G(2) and H(z) by A.(z), B.(2), G.(z) and H,(z), respectively, for examples
A(2) =14ay 2z +an.

We need the following two lemmas proved in Chen and Zhangl®l,

Lemma 1 If A(z) and zB(z) are coprime, then there is a constant &>>0 such that for any
6, satisying || 6,—8 || < e, the following Bezout equation '
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A(2)G,(2) — 2B,(2)H(z) =1, @17
pas & unﬁque solution (G,(z), H,(z)) satisfying
deg(G(2)) < g— 1, deg(H,(D)<p— 1 (2.8
and
Ne@ i+ 1H@E< 1+ le@li + |7 2. 9)

for = 1or2. )
Lemma 2 Let {w,} in (1. 1) be any disturbance (deterministic or stochastic) satisfying
- (1. 5). Then the LS estimate 6, for 8 has the following properties

— 2
lo.—or< Lozt Wy 5, (2.10)

where Wéfup j—l Zwﬁ<oo by condition (1. 5) or (1. 6), and A% denoles the minimum
eigenvalue of P LA+ Em’.
From (2. 6) it is clear that

4 =A(2)G(2)y, — zB(2)H (2)y,
=G(2)[A4(2)y. — 2B(2)u,] + zB(2)[G(2)u, — H(2)y.]

=G(2)w, + 2B(2)[6¢(2)u, — H(2)y,] (2.11)

and » .

4 = H(2)w, + A(2)[¢(2)u, — H(2)y,]. (2.12)

~ From this we see that in the case where 9 is known and w, is bounded in the sense (1. 5) or

(1.6), the system will be stabilized in the sense of (1. 7) or (1. 8) if u, is defined from

G(2)u, — H(2)y, = 0. (2.13)
The “certainty equivalence principle” suggests to us defining adaptive control from
G — KDy = 0. (2.14)

However, in the present case the closeness of 6, to @ is not guaranteed Consequently, it is not
clear if (2. 7) is solvable or not. Even if G,(z) and H,(z) can be defined from (2. 7) we still do
not know whether or not they are close to G(z) and H(z) respectively. So it is important that 6,
- Somehow approximates 6. If this is the case, then adaptive control defined by (2. 14) may hope-
fully stabilize the system. By lemma 2 we see that for first step of approximating § we may apply

an explosive excitation input, by which we mean such an input that yields A%®/n ——>oco. How-

R~>CO

éver, the stabilization purpose (1. 7) or (1. 8) does not allow us to apply such an input for a pe-
tiod longer than finite. Thus we need to define stopping times o; at which we turn off the éxplo- -
~ Sive excitation input and switch on the control defined by the certainty equivalence principle until
% at which the accuracy of the LS estimate 8, becomes unsatisfactory and we have to apply the
®Xplosive excitation input again. After defining stopping times

LA 7W<n<n<op<m<< e,
it is most important to show that there is some integer i such that o;<Cco and 7;=oo, because oth-




176 CONTROL THEORY AND APPLICATIONS Vol. 19

erwise the requirement (1. 7) or (1. 8) will never be met.
Let {&,) be a real sequence with the following properties ]
0<6e<l, &a—=>0, &*>1, (2.15)
where a>>1 is chosen arbitrarily.
We now consider the case where (1. 5) holds.
Define stopping times as follows: 7o=0, and for any i>1,

r—1

o; =min{n > 7,_,; th,(p}' — n?e7 %1 > 0;

j=0

(2. 7) subject to (2. 8) is solvable,

6. 13+ || Ha( MK%; and

a—1

D@y — G s (@™} (2. 16)
=0
a—1 v
% = min{a > 0;; > (y; — @l105)2 > esa (a2}, (2.17)
=0
where y=max{p,q} and s,(z) is given by so(z) =1,
= ‘ :
s.(z) = nmax{z,—k-z(y? +ud), k=1,>,2}, Ya=1. (2.18)
=0 : ’
Finally, adaptive control u, at time z is given by
@, if 8 € [, 0i31) and & = 7 + 2k(p + ¢) + p + ¢ for some i > 0 and k > 0;
0, if # € [, 0i41) for some i >0, but

= A% %+ 2(p+q) +p+gforall k>0;

Ho (D9 — (0o (2) = D, if 5 € [0, %) for some i > 1.
' ‘ (2.19)
In the following lemma we introduce a deterministic excitation signal which is much simpler to be
proved explosive in comparison with the stochastic one used in [9] and [11].
Lemma 3 If A(z) and zB(2) are coprime, (1.5) holds and

o ifﬂ=2k( + )+ + fork=0,1’°"y
u‘={ ’ PT O TR Olo (2. 20)
0, otherwise,
where a>1 can be arbitrarily chosen, then for any a=>2(p+¢),
@ > é% 28D — o1, (2.21)

? .
with 0= (p+1) (1+ j_Ela,Z) , e and W defined in (2. 24) below.
Proof Set &,==A(2)p, and D=[Dy, D,]*, where

e
0 By eee e e e B 0 e 0
0o 0 - Tk
o= |, . . B
: oo 0
0 R 0 0 b1 ose ° 0o ° bq
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e
and
P‘kﬂ "
a oo o0o ooo soa a, 0 s 0
0o 1 - : ' vt :
T — . . .o
2 S .0
0 o909 0 0 al LX) eo0 °00 ®oe a
From (1. 1) it is easy to see that
@, = DU, + W,, 2.22)
where
Up=[u, - u-—(p+q)+1:]T’ W, = [w, - Weppr 0 === 0], (2.23)

q

Let & be the largest integer such that 2(k+1) (p+¢)<<n, and set m=2k(p+q). Then it is not

difficult to see that for any y ER7* with || || =1,

s +2G+p—1 | o a2t —1 ’
2 elzz4 > mogi— S e
i=atrtg A=ttty =2, +p+g
which together with the fact s\ A, (DDT) = = Zein (M" ) >0 implies that
5 +20+p—1 %+20+9—1 5 +20+9—1
D) o) 271.,.1“( D DUUIDT) — s
s=ntrtq i=a,+7+q¢ i=n+ptg
1 B 20+ —1 8 +20+9—1
— T ) —
25Dt (DD D __2 vUt) —p )
i=n,+p+g i=n +q

1 W +20+9) —1
>?eﬂmm

—_—

i=n+p+g

where W Asup sz<oo by condition (1.5) or (1. 6).
R a>0 A1 5=

On the other hand, we have

8 +20+9—1 8 +20+9—1

a3 @d) = it S ey
: i=nFrte bel=1 i+,
5 +20+9 —1 »
<[ D) o) [+ D(1 + 234 ],
i=a,+g J=1

Which- together with (2. 24) yields
a+2G+—1

N D i

8, +26+9—1 ‘
D) UUF) — po-iwa,

i=n,-+¢ i=g, +p+q
Where, =G+ D(1+ La})
From (2. 20) it is easy to get that
2 +2G+9—1 :
D) UUF = getrtog (rOx e == APTIEOL L
= +ptg

From this and (2. 25) we obtain (2. 21).

>

U,-U;r) — p(m + 2p + 20w,

(2.24)

(2.25)



178 CONTROL THEORY AND APPLICATIONS Vol. 10

3 Main Results
Theorem 1 If A(z) and zB(z) are coprime, and disturbance {w,} is bounded in the senge
(1. 5), then the adaptive control (2. 19) stabilizes the closed-loop system in the following sense
sup —— E } +u < oo (3.1)
>0 8+ 1&f
for arbitrary initial vatues ¥, i=0,-—1, cy—ps By J=0,—1,0,—¢.
Proof The first step is to show that there exists an integer i>1 such that 0;<<co ang
T; =00,
We now prove that it is impossible that < oo and 0441=0°°. In fact, if there were an i>(

such that 7,<<co and 0;4,=00, then by (2.19) we get

{a“, ifn=r17+ 2k(p + ¢ + p+ ¢ for some k= 0; G.2

u, 0, ifn_=m butn¢‘r;+_2k(p+q)+p+qfora11k>0. -2
Hence, by Lemmas 2 and 3 we would have that for any n=>7+2(p+q)
8 + 2Wn . T8 g —

"0 ”z<_L_0ﬂ_G____ dm;,ﬁaz- $at0 — pCWa, (3.3)

where 8, =80 — 6,
‘From this, Lemma 1 and (2. 15) we see that all requirements except the last inequality list-
ed in (2. 16) are met for all n=>N, starting from some integer Nozw+2(+9).

Set Cy= E (y2+u?). Then by (1. 1), (2.18), (3.3) and (1. 5) we obtain that for any

=y
n=Ng,
a1 a—1 a1
SV — a8 < 2 ), (9160 + 2>}
=0 =0 =0
<2y[s.(a®) + Col Ml 6,11 2 + 2w,

2 G | 2 + 2W: 2w
<S'(a )(1 + az-) (8(20)—)1’529-—3)" 6(1;-*—4) —1;:]C"IW11 + ';3.7') ’ 3.4)

which together (2. 15) implies that there exists an mteger N1>>N, such that for any n>N;
a—1

> s — B8, 3 < ().
j=0
Therefore, we have 0,4, <CN;. This contradicts 0i4,=00.

We now prove that 7;=co for some %

By Lemma 2 we see that

~ 8 +2WU,
I, 2< Lob e

which incorporating the definition of o; implies that

I 8, |2 << e I 8, " 2 2_ 2Wo; ) » 3. 5)
i of

= ﬂ'i

Similar to (3. 4), by (3.5), (2.15), (2.18) we obtain that

a—1 s—1 —1

2 (y,; - %—10.7‘)2 <2 Z (%—19 )2 + 2 sz

j=0 ! j=0 j=0
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2
<8,s,(az"¢) [(1 + Co)+ Il 6ol 2+ 2Wm] ;Z:l . (3. 6)

of

hich together with (3. 5) and (2. 15) implies that for some large enough i1 and any n>0;,

one b2S

51

20 @5 — $1-10,)* < (a0,
=0 .
Therefore » there must be an ¢ for which 7,=oo.

The second step is to prove (3. 1) by use of the fact that for some i, 0;<Cco and 7;=oco,
By (2.7) we have
= G (D[4(D)p — 2Bo (D] + 2B, () [ (2Dus — H,(Du.],
th = Ho(2)[4,,(2)9, — 2B, (Du] + 4,(2)[G, (2w — H,(2)y.].
Hence, from (2. 19) we get, for any n>n,Ao;+max(p,q), A

% = G (2[4, (2)y. — 2B, (2)u], 3.7
4, = H,(2)[4,(2)y, — 2B, (2)u,]. 3.8)
From (3. 7) and (3. 8) it follows that for any n>n,,
a—1 a—1 -0—1
—Z(yf + ) = E(y} +ud) + = 2@ + ud)
.i=-u 1—0
a—1 l0—1
w @i+ T H 1D D G — 982 + = E(y + D)
j=0 J—O
—1
| <ei TR S CHEPP g G20 B (3.9
% j=0
where Lo = E(y + ud).
j=0
Noticing that =~—= s"( & is nondecreasing from (3. 9) we get for any az=>ng and any 1€ [ng, 2],
' 1—1
TRG+D < b0, 2D
Which together with (2. 18) yields
-1
Sl(a i) {0’2"‘, l 2(% + uz)y L=1,e3m9 — 1; - s.(a ) + 01} 3.10)
Jj=0

Set
cz=a3"-+cl+max{ E(y + u?), l=1""9n0'—1}°

 Then (3. 10) implies that for any n>>1,
s.(a?%) <s, 8.(03"-‘) +
n

n

Coy
¥hich means
s, (a?%)

2 < 1 — 8ﬂi)-—102’
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i.e. s,(a®)n is bounded, and hence, (3. 1) is true. Q.E.D.
We now consider the case where (1. 8) holds.

Define stopping times as follows; 7o=0, and for any i=>1,
2—1

o; = min{n > %i—1: th,tp — a%; 1 > 0;

=0

(2. 7) subject to (2. 8) is solvable,

6. I+ 1A 1< 5
and ly: — Pi-16s] < esi(a™)}, 3. 11)
% = min{n > 0i: |9 — Pim18s,| > &5:(a™)}s (3.12)
where y=max{p,q} and s,(z) is given by sp(z) =1,
5@ = max{z, lyl, lyl, j=n—9p, ==, a—1), Va=Ll (3.13)

Theorem ? If A(z) and zB(z) are coprime, and disturbance {w,} is bounded in the senge
(1. 8), then the adaptive control (2. 19) with o;, 7 given by (3. 11)~ (3. 13) stabilizes the
closed-loop system in the following sense

gg(lyﬁl + Ju]) < oo o (3.14)
for arbitrary initial values g;, =0, — 1,2, —p, u;, j=0,—1,°,—¢q.

Proof Similar to the argument of Theorem 1 we can show that there is an integer ¢ such
that o;<<co and v;=oco. Therefore, for any m;Do;+y, (3.7) and (3. 8) hold, and for any
205, ‘

19 — @165, | < e5su(a™). - (3.19)

From (3. 7) and (3. 15) we see that for any a>n;,

l9:] = 1Go,(2) (9 — Pi-165) |
<G, @ |, Jax Iy.—, P11 |
Ko, I 6..(=> . Klrjléf_ls.—j(az"i)- : (3.16)
Similarly, from (3. 8) and (3. 15) we get
lue | < &, || Ho (2D || 1 Dax Somj(a®)

<g—1

which together with (3. 16) and

| G«r‘(z) e+ | H,i(z) < 2’1’8-1,. s
yields
1 )
max( Iyul 9 |un|} <. '2— .max sn—j(aza")-
Y 0<i<y—1
From this and (3. 13) it is not difficult to see that

27—1

Soyy (@) < o + o= 28s+2v—-;(0!2 2,

which together with Lemma 3 in [4] implies that
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sups, (a2) < co™ < oo,

a2
where ¢ is a constant and depends on (; only. Q.E.D.
Remark Both Theorems 1 and 2 conclude that there is an integer :=>1 such that 5,<“co and
=00 and for n>>0; the adaptive control is defined from
H,(2)ys — G, (DDu, = 0.
This together with (1. 1) implies that after a finite number of steps the closed-loop system even-
tually becomes
F(2)y, = G,,i(z)w. with F(2) = A(z)G,,i(z) — zB(z)H,,‘_(z).
1t is clear that o;, and hence, F(z) depends on {w,}.
4 Conclusion Remarks
For a single-input single-output discrete-time system with unknown parameters and bounded
disturbances; an indirect adaptive stabilization controller is pfesented. The construction of the
.controller is characterized by a deterministic excitation signal sequence and an appropriate time
splitting. The a-priori knowledge for designing adaptive controllers is only the order of the sys-
tem. No matter what the feature of w (¢) is, deterministic or stochastic, the adaptive controller
' stabilizes the closed-loop system. Hence, it is possible to deal with a_daptive control problems by

use of a unified algorithm, for bath deterministic and stochastic systems.
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