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Fault-Tolerant Pole Assignment for Multivariable System
Using a Fixed State Feedback’
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Abstract; The problem of fault-tolerant pole assignment for multivariable system against the actu-
ator failure is investigated. A design procedute is proposed based on the n-linear characteristic coeffi-
cient system and the parameter space design method. With such a procedure a state feedback law can be
achieved to locate all the closed-loop poles in a preécribed region for a given plant under various actua-
tor failure modes. :
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1 Introduction _ .

In this paper, a new design >procedure for multivariable state feedback system is proposed by
which the fault-tolerant control against the actuator failures is achieved'v This stems from locating
the clbsed-loop poles in a prescribed region on the s-plane (i. e. the pole region assignment) us-

ing a dyadic feedback structure. The design problem is formulated below.

Consider the system in Fig. 1, where the plant equa- e u — alk
L "___":: z==Az -+ Bu
tion is
% = Az -+ Bu, ¢H)
zER*, uER™ Assume {4, B} is a controllable pair. The —K K&

state feedback is applied to the system Fig. 1 Multivariable feedback system with actuatot ailure
u, =— Kz, (2 ‘
with = Lu,, 3)
where L; = diag(ly,lgs+** yln) ‘ )
is the actuator failure matrix, and ’ ’ |
1, actuator j ‘normal’,
b= {0, actuator j ‘failure’.
In practise, L; may be viewed as an element of the set &, which includes all possible actua-
tor failure modes of interest. Thus
L € & = {Ly, L1y, Ly}
Let an n—vectdr A denote all closed-loop poles.’ It is known that the system will operate satis-
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p actol'ﬂy if A lie in a region I'! on the s-plane, as shown in Fig. 2. For convenience, a closed re-
gion I, in Fig. 3 is substituted for I, In effect, as I, is on the left half of s-plane with at least
v, far from the imaginary aids, the system with A€ I, is stable and possesses certain stability

margin. Besides, the design requirement on dynamic response will be guaranteed by the boundary
of the hyperbola.
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Fig. 2 A feasible régioﬁ r. Fig. 3 ';’he alternative to I’y
of closed-loop poles on s-plane in fault-tolerant pole assignment problem
The traditional pole assignment problem, i.e. for L;=1 in Fig. 1, finding a feedback matrix
K to locate A in a given point within I"/, was nearly closed due to wide investigation. Recently,
‘the requirement on control system reliability has provided incentives for taking account of the ac-
tuator failure in system Fig. 1, e. g. see a study from LQR theory by E. Shlmemura and M. Fu-
jita (1985).
This paper will give a new design procedure for such problem. Some preliminary develop—
ment is introduced below,
- 2 Development
Definition 7 Consider a sysetm
% = Az + Bu,
k { y = Cx, )
itis called a-linear characteristic coefficient system of K, if the coefficients in.its closed- loop
characteristic polynomial under an output feedback u= — Ky are all the linear functions of K.
The a-linear characteristic coefficient system was first studied by M. Tarokh (1980). An
+ °fror in his study was corrected by G. K. G. Kolka with the lemma below,
Lemma 1 (G. K. G. Kolka, 1985) The system (5) is n-linear characteristic coefficient
System of K ,‘ if and only if

rank Cadj(sI — A)B<< 1. (6)
Lemma 2 If expressing adj(sI— A) as
adj(sl — A) = Ho\& '+ Hy ps2 4 woe + Hy, Hoy =1, ¢
then 4= Spa{H,1iy Hoiy ooy Hor}, 6= 0,1,y — 1, (®
With the unity spanning coefficient of He s

Proof Let
det(s] — A) = & + 18"V + e + ays + ag.
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1t is easy to prove that adj(s]—A4) can be equivalently expressed as
adj(sl — A) = A7 (s G ) AT o 4 (T 6T =2 4 ees, al)AO €))
Simply comparing (7) with (9) gives

-1 Gy—1  Gu—2 s alw -A.—ﬂ I HO i
1 Ag—1 oee az A'—z H]
1 EITI 7% A3 = Hz‘

L 1 . L A° B LH-—L

Thus lemma 2 results immediately.

Generally, each coefficient of the characteristic polynomial of system (1) under state feed-
back (2,3) 1s non-linear on K, containning =X m parameters to be determined. This leads to a
formidable-treating task in fault-tolerant pole assignment. However, this may be simplified using
n-linear characteristic coefficient system. Consider a state feedback of dyadic structure

K =— fk*, ao

FER" is.a give vector, k& R* is the feedback gain to be determined. Then sysiem (1,2,3) be-
comes | '

i = (A — BLfk")az. an

Theorem ] For any given f, system (11) is n-linear characteristic coefficient system of .

Proof System (11) is equivelent to the following single-input system in the characteristic

polynomial
’ i = Az + BLfY,
y =% ‘ , 12)
u =— ky. '

" Comparing (12) with (5), this theorem holds obviously from lemma 1.
For L€ &, denote
ly, = Lif as)
and »
T, = [HoBl;,, HiBly, *HorBY T as
Theorem 2 Let {4, Bl;} be controllable, then rankT;=n.
Proof Consider ’
= [ABl;, A'Bl, - ,A1BL, ],
by lemma 2
@, = [span(H.—)Bl,, span(H,—s, Hu1)Bly,, *+ 5 span(Ho, s Ha1) Bly]-
Clearly rank®,==rankT;. |
. Theorem 3 For L€, let
det(sl — A + Bl,kT) =& + p—r(k)s? + oo 4 po(k)s°
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S0
=[po(k) s 1 (k) 5 *++, paey (k) ] ['sr] + 8= p(B)TF + & ‘ (1%
| Py |
and .
det(s] — A) =s" 4 ay_;5"! + «oe - ggs®
0 , |
=[ao,a1,"' ra-—l:’ {sl-l + s = aT‘C;ﬂ_}_ s (16)
_1_| ' ,
then p(®) = a + Tik.
Proof

det(sl — A+ Blf‘k'r) =det(sl — A) + Kadj(sI — A)Bl,-,, ;
=det(sl — 4) + K (Hyo8 + Hyys™? + o + Hy")Bly. (by (7))
Thus o pi(k) = a; + K'H;Bl;, j= 0,1, ,a— 1.
Note that ¥"H ;Bl; = [H;Bl; T, (16) results.
3 Fault-Tolerant Pole Assignment
3.1 Feasible Region I', in S7-Space
Consider (15), where p(k) ER*'A L, & is the parameter space 6f (k).
Definition 2 A region I',€ & is called the feasible reglon of p, if and only if for any p€
T,, the zeros of (15) liein I, i.e.
A€ pen,C P, ‘ an
By (17) it is possible to carry out the fault-tolerant pole assignment in S-space rather than on
s-plane. Such designing idea is named parameter space method. Using this design method, J.
Ackermann (1980,1984) studied the robust controller desigh problem against sensor failures. Y.
Z. Ye et al (1987) developed a designing scheme for MIMO stabﬂnty fault-tolerant controller in
the case of both actuator and sensor failures. A
detailed - investigation on the property and the 40 P-space
construction of the feasible region I, in &P 3.
Space is beyond the scope of this paper. There 20

Were extensive researches on this respect inl+7], 101

Actually, 2 graphical description for I, is avail- 0! 2 M § 8 o n
able when 2<3. Fig. 4 shows the I, for n=2, Fi& 4 The parameter spaee T, for the second-order system
Which is based on vi=1 and vy,=>5.

3.2 Designing in .57 -Space _

So far the fault-tolerant pole assignment has been reduced to finding a feedback gain k in
(10 for a given f, such that p €& T, for any L;&€ <. Note that when {4, Blf} is controllable,
(16) defines a one-to-one mapping relationship between SP-space and S%-space. Denote the
cOrr‘esl)ondmg feasible region of k for L; in S%space by I' %, that is
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pB ENCPSEENC I, for L | (18)
then I'} can easily be constructed from I'yand (16). In fact these two are of the same djménsion’
1t is obvious from (17) and (18) that ‘

Theorem 4 For all L€ &£, A€ T, if and only if

. .
k€ NT%. (19)

=0

3.3 Design Procedure

The fdllowing design procedure for fault-tolerant pole assignment is proposed based on the
preceding development. |

Step 1 For a given I, on s-place, define the feasible region I’y in $Z-space. It is possible to
constructe graphically I', when #<(3.

Step 2 Determine f in (10) such that {4,BL:f} is controllable for all L;E <. Work oyt
T; for s=0,1,++, N from (7) and (14).

Step 3 Construct the corresponding feasible region I'f (i=0,1,-**,N) in S¢-space from
(16). °

Step 4 Finally, any k within the intersection in (19) will ensure the availability of fault-
tolerant pole assignment. , ‘

Remark 1 For a system with 2>>3, only analytical description on I, is possible. Thus a
suitable CAD‘program is needed to carry out the design procedure above.

Remark 2 In step 2, a fixed f needs to be specified such that {4, BLf } is controllable for
all L;E€ &¥. When {4,BL;} is controllable, there does exist an m-vector f such that for a given
L;, {A,BL;f} is controllable éccording to W, Mf Wonham (1967). However, the conditibn for
the existence of such a commen f for all L.-EEZ is still open up to this poiﬁt. As such problem
has much to do with the fault-tolerability condition, here it has not been involved for the time be-
ing. . _

Remark 3 In certain cases, an empty intersection in (19) may result. Again this is related
to the problem of fault-tolerability mentioned above. When this happens, a relaxed I’ is needed
to lead to a wider feasible region I, in FP-space and so I'} in .S¢-space from the viewpoint of de-
signing. )

Remark 4 1If zero.element is concerned in &, which means that the full failure of m actua-
tors is under consideration, T;=0 for certain L; and by (16) p(k) is independent on k. In this
case it is necessary for the open-loop poles of system (1) to lie in I, in order to achieve fault-tol-
erant pole assignment. ‘
4 Tlustrative Example

In system Fig. 1, consider

P LA B L)
L1 o L 1]

and
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=l drb b b

A T like that in Fig. 3 is taken with »,=1, »,=20. The corresponding T, is similar to that

in Fig- 4. It is easy to prove that {4, Bl } is controllable for any L;E & when f=(1, »T,
rherefore Iy (i=0,1,2) can be constructed from (16). A local inspection on them is given in
Fig: 5, which shows also the common intersection of these three feasible regions in 0% -space. As

o result, it suffices to chose k within the hatched region. For instance,

p = 21 ;
= . k,
1o
2 10]
and 80 f |_2 IOJ St -space
is one of the feasible state feedback laws. In
fact, it is easy to prove that with such scheme
peing adclpted, A will be.
(— 6’ - 17)T for Lo,
(— 4, — I)T for Ll s - = —']

(— 5.315, — 17.685)T for L.
All of them lie in I '

Fig. 5 The feasible regions in .57 -space

5 Conclusions ,
The problem of fault-tolerant pole assignment for multivariable system is investigated. A de-
sign procedure is proposed, by which the traditional pole assignment technique and fault—tolerantl
control are connected with each other so that a system can operate stably and satisfactorily under
various actuator failure modes by a fixed state feedback. Accordiné to n-linear characteristic co-
'efficient system theory, a dyadic state feedback is used, which greatly simplifies the designing for
"multanut system.. When n<(3, the proposed designh procedure can be carried out graphically.
' Computer graphics will make it easier to construct T, in P-space and I'§ in 7 -space. If n>>3,

a suitable CAD program is required to carry out the proposed procedure.
The major open research problems are those related to fault-tolerability conditons mentioﬁed

in Remark 2 and 3, which will be a theme of further research.
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