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A New Decomposition Method and Partial Stability of
~ Nonlinear Large Scale Time-Delay Systems

GUAN Zhihong and LIU Yongqing
(Department of Automation, South China University of Technalogy +Guangzhou, 510641, PRC)

Abstract; In this paper, we study decomposition techniques for nonlinear large scale systems,
which have the feature that the interactions between the various subsystems are nonadditive. Using the
technique of decomposing a graph into its strongly connected components, we first rewrite the nonlin-
ear large scale systems with delays into a hierarchical form. Some simple criteria for partial stability
are obtained.
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1 Introduction

With fast development of science and technology, nonlinear large scale systems with com-
plex structure have appeared in many subjects. Nowadays, we are still at the beginning of study-
ing the theory of nonlinear large scale systems and are short of methods as the problems of the
stability of nonlinear large scale systems with delays are difficult and complicated. '

As you know, it is very important for us how to decompose the systems into a desirable
form. In this paper, we study decomposition techniques for nonlinear large scale systems with de-
lays. Using the technique (see [1]~[4]) of decomposing a graph into its strongly connected
components, we first rewrite the nonlinear large scale systems with delays into a hierarchical
form, by renumbering and aggregating the original state variables, if necessary. Once the system
equations have been rearranged in this hierarchical form, we can easily obtain the partial stability
properties of the nonlinear large scale time-delay systems.
2 Decomposition Method

Consider the nonlinear large scale time-delay system described by

Zi©) = 37, CyOZ®) + D Dy®Zi(t — (1)
TN AR AO RN XOWACRENOY I ACEPR O ) N L

(i=1,°+,m) where Z;(¢) is the state of the ith subsystem and = is the number of subsysterms:
The delays 7;(¢) (j=1,++,n) are nonnegative, bounded and continuous functions.

Given the system description (2. 1), we associate with it a digraph (i. e. , ‘directed Efaph)
G, constructed as follow . we label n vertices as v;, ***, v,, and we introduce an edge from 7 g
v if A); C;;(8)FZ0 or D;(1)3£0, for j5*i; or B) . the function G; explicitly depends on the qua
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, t)’ Z,(‘) or Z;(t—r;(t)), for j7i. Once this is done for all functions Ci;() s Dy (), Gpy »=,
' i the resulting dlgraph is G. Now, the digraph G is really representative of the interaction pat-

o of the system (2.1), because G contains an edge from v; to v; if and only if the dynamics of
g are influenced by Z;(t) or Z;(t—r;(¢)).

Once we construct the associated digraph G, we identify the strongly connected components

40 Recall [2~4] that a pair of vertices (v;,0,) in G is said to be strongly connected if there is

2 path from v; to v; and vice versa. Also, the notion of strong connections defines an equivalence

relation on the vertex set V={v;,++,v,} of G. Now, partition V into its equivalence classes V;,
..+, Vs under this relation, and renumber these equivalence classes in such a way that, whenever
nEVis € V; and i< j, there is no edge from v; to v, in G, such a renumbering can always be
done s although perhaps in more ways than one.

Once we identify the equivalence classes of vertices Vy, s+, V,, and if 7,(¢) =7,(¢) , when-
ever Vo BEV;, we define ' '

() = {Z;(V), v; €V}, a(t — 7)) = {Z;(t — 7;()), v; € Vi),

where 7,(£)=r;(¢) , whenever v;€V;, and ' '

45D = {Cop(0), 2a € Viy 5 € V3, By(®) = {Dop(®), v, € Viy 0, € V),

Fi= {G,v; € V}}

‘With these definitions, the system equations (2. 1) assume the hierarchical form

G =3 Az + D By®a,t — ()

+ Fity 21(8) o0 5a(8) y2: (6 — 11 () o0 (¢ — :(8))), 2.2
(i=1,++,m). Note that the new quantities z; are obtained by renumbering and aggregatipg the
_old quantities Z,, -+, Z, as needed.

Once we have rearranged the system differential difference equations in the form (2. 2), we
ean easily obtain some criteria for the partial stability.

3 Stability Theorems

’ In this section, we shall discuss the partial stability properties of the large scale system with
; time varying delays in hierarchical form .

' G =37 A0z, + D) Byt — 1,(0))

’ + Filts 21 50,20 2 (6t — 718D o0 3t — 7 (8))) @G. D
'"'7":'(‘~1,- *ym), where 1 ER%, tE J=[a, +0), 2,—1n,—n, z'= (z], -, z3)T and 0<C
WO<r=const. The delay 7,(¢) is continuous function.

* We assume that F, is continuous,
Fi(t, 0, +,0) =0, YIEJT, (@i=1,,m), 3.2

ad the solution X (¢) =X (¢,ty,®) of system (3. 1) exists and is unique corresponding to each
. {nitia value condition

zo'(t) =¢i(t)y to — 1<t<to, § == 1, “yM, ) (3. 3)
T=4), where @i(¢) is continuous and | @[ = 122; [ sup |l@(OI]-
1< F

—r <,

o (y—
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Let partial variable ¥ () =Y (¢, 40, @)= (21 (1) s+, % T(¢))T (k<m) and P(¢, to)—dxag(p (
), **» m(tste)) be the fundamental matrix solution of the isolated subsystems
zi(t) = Aﬁ(t)x;(t)’ g = 1,0,k ) Q 4)
Theorem 1 Assume that ‘

DlipGt) | < Mexp(— j:oz,-(g)dg), i = 1,0 ,k, fort>=t,
where M, is constant, A(Z) is continuous function on interval J.

i) |Fi(ty 2108 o »2: () s 3 E— (D)) s+ mE—w(ON |

< E;=1{a;,(t) llz; (0> )| 850 flz;Ct— 7 (D}, E=1,0ks

where a;;(¢) , b;(1) are continuous and nonnegative on interval J.

Let

G1() = exp[— J () — m(s)ds],
60 =1+ M|, expcj A2 3V (a3 ()6,() + B (IGss — )as]

e I RO L
)
where
ﬂa(t) = M:‘[aﬁ(t) + () + ||B»(t)|i)exp(j:_ wﬁi(é)dﬁ)], G = ly'f‘ NN

ai} @ = "-Aij(t) “ + aij(t) s b.‘; @ = "Bij(t) “ + bij(t) s (] = ], 00yt — 1,8 = 2,9 k)
M = max{M,++,M;}.
Then for i=1, - ,k, {=>ty, the following conditions
1) G@)<<bi(ty) =const, 2) G ()<b=const, 3) G (t)—>0 (t—>00)
limplies that the trivial solution of the large scale system (3. 1) w1th respect to the pa_mal variable
Y is 1) stable; 2) uniformly stable; 3) asymptotically stable, respectively.
Proof When i=1, (3. 1) means that
31(5) = A ()2 (t) + B ()=t — 7 (@) + Fi(, 111(3) 2,(8) 2, (¢ — 171(5)))

Using the variation of parameters formula, we have
t
() = p(&ste)zy + L 2145 8) [Bry ()2, (s — 7 (8)) + Fi(s,31(8) 21 (s — 7,(8))) Jds.
0 B
Therefore

llzr O <Myl Bllexp(— j m(&)dE) + j;Mltau(s) Izl

+ UIBu | + dn@e)llzi(s — 11(8))l|]exp(>— jill(i)dé)ds :
which is equivalent to that ’

21 CE) |lexp<j: ()8
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] (]
<M1"¢" + J"Ml[all(s) “11(3)”0)‘13(.!‘ lll(g)df) + (u(s) + "Bu(s)")
s —7, () :
coxp[__ (@)l — OO
Iptting .
W = sup_{la@lesn(|m@a},
<< %
hent |

Ta@lexp(] 100

<Mloll + J Mi[an(s) + (du(8) + [Bu(® |l)e)(p(r ()M(;)dé)]W] (s)ds. (3.5)
L) . s—7, (&
In view of the fact that the right of inequality (3. 5) is nondecreasing, we get
W0 < M9l + [ mWi)ds.
Y

. 13
By Gronwall-Bellman inequality , we obtainW, (1) < M 1"(p||exp(J- 1 (s)ds) which implies that
‘U :

lz (DI} < M| Dllexpl — f ((s) — m()ds] = Mi|olG1 (D, t=t  (3.6)
Yy

When i=2, (3. 1) is that
£® = DL A Oz® + 3 Bzt — 5O
+ Fylty 21(0) s22() s21 (¢ — 71 (D)) 22(t — 72(DD).

_ By the variation of parameters formula, we get
2,(£) = pa(tyte)z20 + J p2(t,8) [An ()2 () + 2 _IB:J(S)”:(S 7;(s))
+ Fa(ss 21(8),22(8) s21(s — 7 (8)),72(s — 73())) Jds.

Because of conditions i) and ii), we arrive at

’:“Zz(t)“ <K M,||Pllexp(— j‘ 22(8)dé) + L M [ (JJAn D + an Nz (Dl

+ (Ba | + bu(e)lar(s — ()| Jexp(— j:az(@dg)'ds

+ J: M[agn(s)|z2( ] + (b2(s) + | Be2() D ll22(s — 72(s)) || Jexp(— ﬁzz(g)di)ds,
 Which is equivalent to that

llz2(®) llexp (J’ 22(£)d&)
<mlio| -+ j MLan(o) ar () + b o> llaCs — vlcs»n]exp(j 22(£)d)ds

+J MZ[“ZZ(S)HIZ(S)“exP(J lz(i)dé) + (bzz(s) + "Bzz(s) ")



396 ‘ CONTROL THEORY AND APPLICATIONS

VQL 10

s . . . ! 's— 1, (8]
voxp([|_ m(@ap s — rlexp(| " ra(aglas.
Letting
Wy = sup [||3z(tx)‘"eXP(j‘lM-(‘;)dé)]
l—TQlQ L

and noticing the inequality (3.6), we obtain

llz2Ct) llexp(ﬁ 22()AE)
<o) + j MMl [ai ()G (o) + b (s)Ga(s — 71(8))]°XP(J:M(§)d§)ds

+ [ Malan(o) + Gual) + IBuo e[ m@@OI@E
'n ) ""fz L) .
Since the right of inequality (3.7) is nondecreasing, it follows that

W) <Mo|l0ll{1 + j:M[a;I(s)Glcs) + b3 ()61 (s — fl(s))]equ:ze(g)d;)ds}.

-
+ Lu/tz(s)Wz(«s')ds.
By Gronwall-Bellman inequality, we have

Wo () <Ms|loll{1 + J_;M'[az“l ()G1(s) + b4 ()G, (s — 71(8))]exp(j;lz(§)d§)ds}

]
. exD(J-' #z(s)ds) ,
0
which implies that o -

IOl SBLAOITT + [[ k(65> + b6 s — m@exp([ 1a(02230]

. exp[— Jt (Ag(8) — #(s))ds]

AL R OR @

It is easy to see that

lao Il <mlloll{1 + LM >4 (a5 (92G5() + b5 (8)Gy(s — r,--(s>>]exp<j;a,~<§>de:)ds}

« exp[— j () — w(s))ds]
0

=M|ol|G@), t=¢t, i=2.

Consequently we arrive at

B ) i ’
Ayl < 335 lls@I < X5 Millole @ = el D7, M6,
From this estimate we can see that the conclusion of the theorem holds. The proof is therefor®
complete. : ‘

Theorem 2 . Suppose that the assumptions i), ii) in Theorem 1 hold. Moreover,
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J‘ ay.(sdexp[ — J-‘ (A(8) — X(&) — p;(£))dE]ds < ay; = const,
‘o '0 .

't & c—a,.(a)

L b’; (s)exD[J"oﬁw(';)dg - J.‘ (lj(g) - ﬂj(g) )dé] < b,','"= const ,

o o

- ot j;l,Z--- si—1, i=2,+,k, t2>ty, Where a; (), b (s), u;(s) are defined in the Theorem

,; L

, Let
u(®) = max{g(®)}, A@) = min {2}, tE€J.

1<k 1<i<E
Thens the following conditions

D [[A® — w@ K> b = const, 13> tos

o

2 [ = w@©Js> b= const, >ty

3) :“’[z(;) L e =+ oo

L

implies that the trivial solution of (3. 1) in respect to partial variable ¥ (¢) is 1) stable; 2) uni-
formly stable; 3) asymptotically stable, respectively.
, Proof Let X(t)=X(¢,t,®) be any solution of system (3. 1). By the Theorem 1, we see
 that ,
IOl < Millolloxpl— [ Gu(® — m@ag), (>t

. .
From the inequality (3. 8), we get -

lex 1l <MalloN{1 + j;MIEa;I (dexp(— j;(xl'(g) — m(©)d®)
+ bi(dexp(— j:"("ul(;) - m(;))dé)]exp(ﬂzz@)dg)ds}
- exp[— J:u(lz(S) — m(s))ds]. |
EUsing the assumptions, we arrive at ’
lax(ON <MABITL + MsCa + bm)Joxp(— || (aa) = pa(s))ids)
=M Ild’llexp(— J:o(%z(S) — p(s))ds).
Asa gene}al‘mle, when i>>2, it follows that
Il <1 + [} 3373005 M5 oxp(— [ s = meenao
+a @M= [T 0® — @]

0

« exp( j'a,-@)de:)ds}exp(— j (A(8) — w(£))a2)
. '0 ‘0
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<lalC + S5 @+ Jexe[— [ Ou(® — m(@)de]
=WWWM—£%@*M@N@ £t
where M =M1+ EZ:IM?’ (ay+b)15i=2, 0 ky MY =M,. Therefore

17t < Dl < oy + 35 M 0llexel— Ju@)—u@»@]

which implies that the conclusion of the theorem holds. Thxs proves the theorem.
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