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Abstract; This paper focuses on the problem of robust He. control for linear systems with time~
varying parameter uncertainty. The uncertainty under consideration is assumed to be unknown but
bounded and can exist in both the state and input matrices. An approach is proposed for designing a
state feedback control law which will quadratically stabilize the plant and guarantee a disturbance at-
tenuation constraint as well as the stability margin for all admissible uncertainties. It is shown that a .
suitable stabilizing feedback matrix can be constructed in terms of a positive solution to a certain pa-
rameter-dependent algebfaic Riccati equation.
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: 1 Introduction
The standard robust H., control problem is- depxcted as w_ | 1
Fig 1. I+4-4E ,

In this diagram, X is a nominal time-invariant linear

system; AX represents plant uncertainties, which may be

K

{f'caused by several practical reasons, such as modeling errors, }
! Fig. 1 Dragram for standard

Heo control
Dent failure, etc; w is an external disturbance vector; u is the control input; z is the controlled

neglected non- linearity , non-ideal implementation, compo-

_output; and y is the measured output. The standard robust H., control problem involves designing
’:a compensator K (s) such that the resulting closed-loop system is (quadratically) stable with a
“disturbance attenuation constraint for all admissible uncertainties 4.

In the present paper, attention is focused on the robust H., control problem of linear uncer-
tam systems containing time-varying uncertainties in both the state and input matrices. The time-
_ Varying uncertainties are assumed to be unknown but bounded. It is assumed that the full states
_ of the plant are available for feedback. The approach adopted here relies on a different parame-
ter-dependent algebréic Riccati equation (ARE). Based on the ARE, the paper presents a state

feedback design which will quadratically stabilize the plant and guarantee a disturbance attenua-
 tion constraint for all admissible uncertainties. Furthermore, the desired state feedback will result
: In the optimal stability margin to the closed-loop nominal system, i. e. the resulting closed-loop
L '

* Supported by the Development Fundation of Nanjing University of Science & Technology.
Manuscript received Oct. 17, 1991, revised July 7, 1992.



442 CONTROL THEORY AND APPLICATIONS oy

—2

system has the optimal transient behaviour in some sense.

Notation In the sequel, we shall use the following notion: For symmetric matriceg. P !n
Q, P>0(P>>0) denotes the fact that P is positive definite (positive semidefinite). M°"°°Ver o
>Q (P>0) denotes P—Q>0 (P—Q=>0). Amal*] tepresents the maximum eigenvalye of 5
matrix. L,[0,00) is the space of L integrable functions on [0,00) and ||+||; stands for o o,
L,[0,00). The notation ||4]| denotes the spectral norm of matrix A.

2 System and Definitions

The class of linear uncertain systems under consideration is described by state equationg of

the form.
) = [A + 44@@)T2® + Bw® + [B: + 4B, () u(®, (2. 1a)
z(t) = C1(®) + Du(®), (2. 1v)
y(@) = Cx(®), 2. 1¢)
where z(t) € R" is the state, u(¢) €R* is the control input, w(t) € R? is the disturbance input,
y(t) ER! is measured output, z(¢) € R is the controlled output, 4, By, Bz, C1» Dy and C, are
constant real matrices of appropriate dimensions, q(¢) €R?, r(¢) E R’ are vectors of timca-v;'n-yins
uncertain parameters, 44(+) ;R*—R*** and 4B,(+) ;R*—>R*** are continuous matrix functiong
which represent the state matrix uncertainty and input matrix vuncertainty , respectively. It is as-
sumed that the uncertainties ‘.
g(*);:R—>QCR"
r(+):R—> ¥ CR".
are Lebesgue measurable, where Q and ¥ are prescribed compact subsets of appropriate spaces,
Furthermore, AA(+) and 4B,(+) are bounded as follows '
AA(*) € A: ={4A(+):447(+)44(+) < 4,
A is a known positive semidefinite & )X & matrix} ;
A4B;(+) € B: ={4By(+) :4B}(+)4B,(*) < B,
B is a known positive definite m X m matrix }.

Note that in practice the norm bound B may be positive semidefinite. In such a case, we can
always chose a sufficiently small parameter- 4 such that By; =B+ uI>>0. It leads to a positive
definite norm bound By of and 4B;(+). o

For a technical simplification, we shall make the following assumption
Al pic, =0

It should be noted that the assumption A1 causes no loss of generality, see [2].

This paper considers the problem of state feedback robust Ho, control for system .. we
assume that perfect state information is available for feedback and we are concerned with desig?”
ing a state feedback control law to regulate the system (2 1) with a prescribed disturbance atten”
uation constraint as well as a given stability margin for all admissible uncertainties AA( )EA
and 4B;(+) €B. ‘

Let the control law for system (2. 1) be given by u(t) =Kz (¢). Then, the resulting closed”
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system is as follows

JooP > :
#() = Ac(®z(®) + Bw (@), (2. 22)
2(8) = Cax(®), | - (2: 20)
, y(&) = Cx(®), (2. 2¢)
wher®
A@®): = A+ BK + 4AQ) + 4B,(DK, (2. 32)
Ce: = C, + DiK. " (2. 3b)

In this paper, we shall use the following notion of stabilizability related to system(2 1

Definition 2. 1  ((y, &)-quadratic stabilization)

Let constants y>>0 and 6>0 be prespecified. The system (2. 1) is said to be quadratically

stat,ilizable with disturbance attenuat}on y and stability margin & via state feedback if there exists
a state feedback control # (¢) = Kz (t) such that, for all admissible uncertainties 44 (¢) and
4B, () » the following conditions are satisfied ; ,
i) There exist a symmetnc matrix P>0_ and a scalar .¢>>0 such that the Lyapunov function
y(¢) =2"Px satisfies E .
V(z) = 28"PA)z <— e|z|?, z € R 27 0;

ii) Subject to the assumption of E_zero initial condition, the controlled output z satisfies ||z]l;=

pllwllzs T
; iii) The nominal closed loop system matrix Ay: —A+BZK has a stability margin J, i.e.
ReA(A+B.K)<<—4..

In the remainder of this section we shall present a fact that will be needed in the proof of the
',mam results. . '

Fact 2. 1 Let X, Y be matrices of appropnate dimensions with Y positive semidefinite sym-
- metric. Then,

X"Y+YX aY+—XTYX for any a > 0.

Proof Factorize Y a»% (YA) and define the matrix
W, = oY% — a—HY%X,

Theﬂ,wehave
wa=af+%xryx—xry—yx>o.

Hence the results follows.

3 Main Results

k The approach adopted here in this paper to solve the robust H control problem involves
lving 5 parameter-dependent algebraic Riccati equation associated with a disturbance attenuation
Constraint y and a stability margin constant é as well as the uncertainties in the state space model.
Given the system (2. 1) and the desired constants y>>0 and 6>>0, we define the follwoing alge-

 draic Riccati equation corresponding to the problem of (y,8)-quadratic stabilizability.
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(4 + 8DTP + P(A + 6I) + y~?PB\BIP — PB:RT'(P)BIP + R;(P) + el =0,

| Q.
where

Ri(PY: = B+ ~IPIB, R(P): =010, + g IIPIA.
¢ is a sufficiently small constant, a>0 is a design parameter.
Now, we present the main result of this paper.
Theorem 3.1 Let the performance constants y=>0 and 6>0 be prescribed. The system Q@.
1) is (y,6)-quadratically stabilizable for all admissible uncertainties if for a sufficiently Small o
0, there exists a constant a€& (0, 24) such that the Riccati equation (3. 1) has a posmve defmlte
solutxon P. In this case, a suitable feedback oontrol law is given by
w(t) = Kz(t), K =— Rr'(P)BIP. : 3.9)
Proof Suppose that there exists a constant a€ (0. 26) such that the Riccati equation (3,
1) has a solution P>>0. We will show that, with the state feedback control law (3; 2) s the sys.
tem (2. 1) is (y,d)—quadratic stable. First, let us consider the resultant closed-loop sys'tér:n .
2) and show that v ‘ ’
AR()P + PA(t) + y~2PB,BIP + CECc < 0. » (3.3)
Note that, for any symmetrié matrix P - o
< [Pl
Thus, we have
AAT()PAACE) < ||P]|A4T () 4A() < ||PII4,
; BI(t)P4B,(t) < ||P||4BE(£) 4B;(¢) < ||P||B.
Then, it follows from fact 2. 1 that
AP + PAD)
= (A4 + B;K)'P + P(A + By,K) + AAT(t)P + PAA(t) + KT4BI(O)P + PAB;(OK

<A+ BEYTP + P + BEK) + (26— P + 5r— AT OPAAW + aP

+ %—KTABE(t)PABz(t)K

<A+ D™ + P(A + D) + 23 1_ a||P||71 + KTBIP + PB.K + —‘1;||P|1K1"B‘K. 3.9

Furthermore, considering assumption-A1, it follows
03 = (€; + DiK)T(C, + DiK) = CIC, + K'EK, 3.9
where
E = DID.
Combining (3. 4) and (3.5), we have
AL (Pt PA( + ¥y *PB,BIP + CiCc

<4+ 6D'P + P(A4+ éD) + y~*PB,BIP + O1C: + 55— 25 ||P||A
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+ K'BIP + PB,K + K'(E + —01,—||P||§)K. (3.6)

pstituting (3. 2) into (3. 6), it follows
AWP+ PA(t) + y~*PBBIP + ClC,
<S4+ 6D™P + P(A+ 6I) + y~*PB,BIP — - PBoRT (PYBIP + Ry(P)
K—ed <0,

dences (3. 3) is true.

Su

Now, we show that the resultant closed- -loop system is (y,d)~ quadratlcally stable.
Consider the Lyapunov function '
V(z) =— 2TPz.
}{encé’ the time derivative of ¥ (z) along the autonomous trajectory of (2. 2) is

, V(&) = aT(AFWP + PA() ]z
Thus, it follows from (3. 3) that the closed-loop system (2. 2) is quadratically stable,

In order to establish the upper bound y|lw]|, for L;[0,00)-norm of z, we assume z(0) = 0.
': Now» let us introduce

J = f:(sz — y2wTw)dt.
Then, it follows from (3. 3) that, for any w€ L,[0,00)

7= r[zr — Yufo + S @) la— "(00)Pa(o0)
-—J- {"CECx — y2uw™w + [2TAL(L) + wTBT]Pz + zTP[AC(t):c + Byw]}dt
= J FLAEWP + PAc®) + y"PBEP + B0, Jadt

: — J‘:o(yw — ¥y 'BIPz]"[yw — y~'BIPz]dt < 0,
e Jlzll<plleo]lz.
' From the pfopexfties of Riceati equation, it follows that
A + 61 — B,RTY(P)BIP
f‘s Stable. Consider the nominal closed-loop system matrix
“ 4o: = A+ B;K = A— BR{'(P)BJP.

;Then, we conclude that
. ReA (4o + oI) < 0.
e,
Rei(40) <
That is, the nominal closed-loop system has a lower bound of stability margm d. This completes
lhe DrO()f A

Remark 3.1 From the theorem we conclude thit non- zero initial states of the closed-loop
:ﬁﬁ%tem should decay at least as fast as exp(—ab).
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