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Absiract; In this paper, we present a quantitative analysis of the robustness of a reduced-order
pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose or-
der of the real process is higher than that of the model used in the controller design.‘ The result of sta-
bility analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-’
loop real system via the reduced-order state-space self-tunet is BIBO stable in the presence of unmod-
elled dynamics. ‘ ’
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1 Introduction ,

The problem of robustness of an adaptive control system has reoently been‘studied by many
authors('~®1, This is because the development of adaptive controllers for adaptive conu'ol systems
is based on the assumption that the model used m the controller desrgn is an accurate representa~
tion of the real process; however, the degree of most real processes is often hlgher than that of
the model used in practice. As a result, a stability problem may occur due to a mismatch of the
orders of the modeled processes and the real processes[lj. Hence,i a study of‘rob'ust stability ofﬁ the
utilized algorithms for the controller design is necessary. »

During the last decade, vast amount of research was devoted to qua.ntrtatrve analysis of the
robustness of self-adaptive algorithms such as the development of conic sector theory and normal-—
ized system scheme[Z 3, In reference (4], the normaltzed parameter estrmatron approach com-
bined with a dead-zone method in which the modellmg EITors are treated as a bounded dlsturbance
and utilized as a parameter adaptatron stoppmg criterion to guarantee global stability was devel—
oped. In contrast, in reference [ 5], the robust stability of a multivariable adaptive controller
based on a factorization approach’ was established , which is useful for the robust stability analysis
of adaptive algorithms. o

In this paper, we are concerned with the robust stability of the multivariable adaptiw)e con-
_trol system via the reduced-order state-space self-tuning controller developed in referenee [6]:

Our approach to quantitative analysis of the robust stability of the adaptive control systemt® can
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be described as follows. First, we utilize the normalized parameter estimation schemel4] to carry
out the parameter estimation with the presence of unmodelled dynamics. Then, we use the ana-
lytical method developed in reference [57 to resolve the robust stability of the adaptive control
system via the reduced-order state-space self-tuner(¢), Finally, we determine the bound of the
modelling error with which the self-tuner can be tolerated.
2 System Description

In this paper, both of the plant and the reduced-order model are assumed controllable and
obser‘}éble.

Consider the following m-input-output block observer-type discrete-time stochastic linear

plant:

gt (k) = Ale} (b— 1) + Bruk — 1) + KJe" (b — D, (1a)

y(k) = O}Tz} (k) + e* (k) (1b)
where

- Aﬂl I, Om oo Om xo‘i (k)

- Om I, eee Om o (k)

A: — .A02 : ) ' i , B: = |, ,  x2 (k) — Z, 2. ,
— Ay 0, 0, <= O o (B

Co*T = [lm Om Om oee Om]mef’
4(k) €R™ and y (k) € R™ are input and output vectors, respectively; block elements Axs Bi€
R™Xm (4=1,2, e+ ,7) are constant matrices, =5 (k) ER"(G=1,2,+,7) e* (k) €R" is the inno-

vation process which is a white noise process with zero mean and covariance R} €R™** and

sup le* (B || <6, €9
(L 2CH)
with 6,>0, K} € R™*™ js the Kalman gain matrix.
A* (YD) =1, + Anzmt - Azt A e A a2, (3a)
B*(z71) = Byz~! + Bupz %+ o + Bz, : €1))
D*(z™V) = In + Dz 4 Dz 4 <o + Duz™", LS
and Dy = A+ Kuy, &= 1,2,,m (3d)

It is observed from (3d) that the Kalman gain K, can be directly computed from the estimated
parameters D, and A,. An alternate representation of the original system in (1) can be described
as follows . |
y(k) = 6*T®" (k) + e* (k), (4a)
where '
6*T = [Aus*** yAmsBors*** sBas Doty s Don ] (4b)
Or (1) = [— g1k — 1,005 — gk — 1)yey — gk — 7),u (b — 1,000,
Uk — 1) 5000 yun(k — 7) ye8 (B — 1) yeeeyet (b — 1,000 yem (b — 7)]% (40)
The 6* in (4) is the parameter matrix of the original system. For a reducé—order controller de-
sign, a reduced-order observable model is required as

z,(k) = Az, (k — 1) + Bu(k — 1) + Ke(k — 1), (5a)
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y (k) = Gz, (k) + e(k), : : (5b)
where ; , :
- Aal I, Om reen Om : 01 Kol- xol(k)
- 0 In = 0 Bl i | Ko e e
A, = .AoZ R R . | B, = ,2 s K, = R ? sz (k) = i 2_.( ) ,
—— A Om Om .ee 0, ) : on(k)

7 = [Im On 0y = Om]anua
where n<r, and e(k) is the innovation process of the model.
The equivalent observable ARMAX model of (5) is

: A Dy (E) = B Duk) + Dz De®), | 6
The alternate form of the model in (6) can also be rewritten as follows;
y(k) = 6"B(k) + e(k), ; o (Ta)
where |
0T=[Ao1,"',Am»Bou“', s Dats oot s m], 4 (7b)'

D) = [_ ?Il(k - 1)9",') - ?Im(k — 1)y, — ?/m(k — ) yuy (b — 1))'" ’
um(k e 1) s e vum(k o n)’el” (k — D,yee,ei(E— 1) PR ’,er: k — n)]'l". (70)
where 0 is the parameter matrix of the reduced-order model. The e(k) in (6) can be decomposed

into two terms,

e(®) = (k) +e* (), ey
where e* (k) is the innovation process of the original system and ) ; J -
E(k) = 6*T®* () — 60 (%), ’ (8v)

In reference [ 6], it was assumed that é(k) in (8) is a zero-mean stochastic sequencé and statisti-
cally independent of e* (k). In this paper, the assumption in reference [ 6] is relaxed so that (k)

is not a zero-mean stochastic sequence and can be represented as

D(zDE®R) = A6 AD(R) ™S
where
AT — {(EAm+l’... QAw’BaI+19"'BO"DDI+1""’ m-]m)(3m(r-g)9 T > Ny ’ (gb)
] T == 1N,

A0k) =[—yp(k—n— D,y —ga(E—n— 1,000, — gulb — ) yu (b — 5 — 1),
Ug(k — 1 — 1), 000 yu,(k — 1) ,ef (k——n—- Dseoryer(b—n— 1), ,e8 (& — )%
| %)

Then, from (9a), it is reasonable to make the following assumption;

Assumption 7 Assume that there exists a x>0, such that for k=0, the unmodelled error
satisfies the constraint. e :
e | <ulldom® |, (102)
and further, we have ‘ o
e | <wullor® I, (106>
where @* (k) is related to the plant input and output sequences. Eq. (10b) shows that the mod-
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elling error &(k) is relatively bounded; therefore, u can be considered a ineasure of the relative
magnitude of the modelling error. Note our primary interest is to find a relative bound of’the
modelling error with which the adaptive controller can be tolerated. .
3 Normalized Parameter Estimation ,
In order to develo§ an adaptive control law, we shall first introduce the parameter estimation
algorithm for the model in (6).
Defining the parameter estimation error, 6(k) =8(k)—4, the estimated output §k) = ok
—1)® (k) , and the innovation process, s(k)=y (%) —j(k).
The reduced-order model equation to be estimated is written as follows,
y(®) = "G — DEW® + o), (11a)
ok — D= [Auts=> s Aous Bty oet s By Doryooe s D I (11v)
B = [— g1k — 1)yoery — gulk — 1)y — gk — 0) (k= 1),
Un(k — 1) ,000 yun(k — 0) 61k — 1) yo0e yen(k = 1) ;00 s,k — 7). (11¢)
As far as the parameter identification is concerned, in the case of bounded disturbances, the
dead zone technique is utilized to prevent parameter drift. On the other hand, in the case of un-
modelled dynamics, the identification error may grow without bound; hence, the dead zone tech-
nique of the bounded distrurbances can not be applied directly. This leads to the use of the param-
eter normalization technique which allows unmodelled dynamics to be treated as bounded distur-
bances. In this paper, a normalized parameter estimation schemel] is used to estimate the param-
etet Axy Bss and Dy in (6). -

The normalized variables of the process are defined as

y(k) k) CP(’G) 4P (k) e(k)
k) = 2’ (k) = O (k) = X A (k) = TOR &) = 25’ (12a)
n(k) = max( max |®7 (k)|,7.), - (12b)
1G<3mr .

where 7, is a pre-selected positive constant, and @;" is the i-th element of #*. Using these nor-
malized variables, the model in (7a) can be rewritten as follows, ,

g (k) = 6" (k) + 4k, (13a)
where

[e(k) + e (k):l
(k)

It can be shown in the following lemma that the sequence {#*(%)} in (13b) is bounded.

A (k) = (13b)

Lemma 1 The normalized sequence of the perturbed signals {4* (k¥)} in (13b) is
bounded.
Proof

< el ae@w | Le* k) |l
(k) 2 (k)

we are able to estimate an upper bound of A*(k).

I 2 | +

< u[3G — mym]h + 22, (13¢)

Define
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4 = [451,"‘ sty .
where 4> 0 is an estimate of an upper bound of |41 (k) |, i=1,,m. Also, define 4,=
Il 451 » then 7, is an estimate of an upper bound of I #@& |
’ Based on the identification algorithm in [4] , we can obtain the convergence properties of
the posterior estimation error and of the ‘parametets. A posterior estimation error is defined as
56 A y(B) — TR, f (14)
Lemma 2 According to the esimation algorithm in [4], we have:
i) | 8k) || is uniformly bounded, which implies that there exists a constant M >0, and
(k) EQ=1{6; | 6 || <M}, where Q is a closed subset of R™; '
i) lim | 8y || *— [ 6G—1> || *1=0;
iii) hm[ o | — Il 6G—m II J=0, & is a limited positive integer;

iv) There exists a positive integer K, such that
I | < 24dmax || @*®) |l 7, ask> K
This proof can be found in reference [4]. k '
4 Multivariable State-Space Self- Tuning Controller
Once the system parameters 4(k) are obtained, the adaptive control law can be determmed
as followsl®],
The estimated £,(k) with 8(k) can be written as
z,(k) = A (k)2 — D + BWuk — 1) + K,()a¢k — 1), (152)
y (&) = 052,(k) + 8(k), (15b)
where A,(k), B,(k) and R,(k) are the kth step estimation of 4,, B, and K,, respectively.
Assumption 2 Let G(8)= [:A;‘ll?,,,ﬁ;"zl?a,‘--- yA.B,, B,]. Assume that there exists 2 posi-
tive real constant y,>>0 such that |detG(8) |’>y,,.z Then ; the stéteffeedback control law is given
oy , , ; ; | , )
u(k) = ,,T(k) — FrTc:co(k), (16a)

where 7 (k) ER" is a reference input vector with an input gain matnx H ER"‘X”‘ If’rER"'x’""
T S ae
where A4, comes from the controllable model of (15), and o
80 = Yjax = [ M. — P, (16¢)
=0 i=1 ’
det(Alm — 4, — BFST)] = [[det(aln — PD. O dsD

$=1
5 Extended Dynamic System D%cnptmn
In this section, we reformulate the adaptwe control system developed in previous sectlons in-
to a composite dynamic system which is suitable. for robust stabxhty analysns using the” theory de-
veloped in the next section. :
First, let
25 (k) = [(D*T(k),x,,(k)], Do an
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where ®*T (%) and i (k) are defined in (4¢) and (15), respectively. Next, we. rewrite

& (k) s g
@* (k+ 1) = 80* (k) + &,(k) + (k) + P.* (k) (182)
where : SR ‘
o 0 - o 7
Lue—1> 0 0
8 == 0 Iig—1y O s : (18b)
L0 0 0 = 0]
X X 3
¢;(k) = [‘“ T(EY Oy eee s OF O 5200, 07 ;E""»OIJJ, (18c)
BECRY = [OF,oen, OF ,u™ (k) , OF s 000, OF, OF oo, 077 (18d)
@Lo (k) = [OF, 000, 07,00 g oo, O e * T(R) , 07y o+, 07 ] 5 (18e)

where 0;T=[0,,07];xn Then, from (15b) and (16a),y Eq. (18a) becomes
O*(k + 1) = S8* (k) -+ Dy (k)Z,(k) + Do (k)e(k) + Dy(kde* (k) + Dy(B)r(k), (19a)

where

[ — 07 — I,) [0 707]
0 0 0 0
D= | e p,=| % |, b= O b= T (190)
0 0 0 0
0 0 I 0
Lo L 0 o] 10|
Substituting (16a) into (15a) givesb
8+ 1) = A,E — B,WOFTIE®) + K,k + B,&) Hy (k)
= F1(k)i, (k) + K, (k)ek) + B,(k)Har (k) (20a)
Fi(k) = A,(k) — B,())FFT., ‘ (20b)

and combining the resulting equations (192) and (20a) yields the composite dynamic equation of

the closed-loop system;

2G+ D = BWZG) + BMER) + Bx®e* ¢ + B 7 () (21a)
where
ERXOl (D (k)] [Ds (k)] _ WXON
E (k) = vy Ba(k) = ,  Bi(k) = s, By(k) = | .
B =1 rwl PP kel PP 1o 0 PP hwnl
(21b)

In the following section, we carry out the robust stability analysis using (21a).
b The Robustness of Self-Tuning Adt;ptive Controller

In this section, we state two lemmas as follows.

Lemma 3 Consider the time-varying difference equation

z(t+ 1) = A@z@® + f¢,2), z() = € R7, (222)
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where f(t,z) is bounded as ,
I £ | < o+ @) 2@ || + 7@, S (220)
=0, 0@ €yand 0<r2(t)6l°°

Suppose that the zero-input system in (22) of the form

z( 4+ 1) = A@z() : o 23
is exponentially stable, i.e. , there exist some constants o,>=1 and 120,220 such that
" q)(t,tl) ” < alaﬁ““l) : (24)

for any ¢ >0 and ¢>>¢,, where ®(t,4) is the state transition matrix of the system in (23).
Then, if the following inequality is satisfied .

<a<d=®, (25)

1

we can conclude that

i) z(t) €1=, and in addition, | z(¢) || <v(¢) as t—>o0, where v(¢) is the output of the
system with the transfer function & (z~1) =@,/ (z— (doay+a2)) , driven by r,(¢).

ii) Whenever 7,(¢) €27, and pE€ [1,00), then z(¢) € & which implies || z(¢) | —»0 as ¢
—» 00,

Proof see reference [5].

Lemma 417]  Consider the system ,

z(t+ 1) = A@®z® (26)

which has the following properties .

a) || AC®) || is uniformly bounded;

b) There exist 0<ege<l 1, such that

max | 4(A) | <1 — e <1 forall &2t

¢) sup || AG+1)—A@) | is sufficiently small.

where £, is a positive constant, and A,(A(t))' denotes the jth eigenvalue of the matrix A(¢).
Then, the system is exponentially stable.

In order to show the system in (21a) to be exponentially stable, We proceed through the fol-
lowing steps. '

Step 1 Show that F; (k) satisfies part a) of Lemma 4. . :

From Lemma 2-i), we know that || 4,(k) | and || B,(x) | are bounded. From Assump-
tion 2, we know that || FT|| and || T.|| are also bounded. Thus, || Ei(k) || is bounded.

Step 2 Show that B, (k) satisfies part b) of Lemma 4. |

Since

' det (Al — Ey (k) =det(AI — 8)det(Al — F1(k))

=det(Al — S)Hdet(u,,, —_—P) @n
i=1

the roots of det (Al — 8) ate zero. If we choose P;, i==1,+,m such that det (A/— P)) has no
toots lying outside the circular disk, i.e., 0<| A|<<1—e, and 0<Tg,<<1, then B, (k) satisfies
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part b) of Lemma 4.

Step 3 Show that E,(k) satisfies prat ¢) of Lemma 4.

The above fact can obviously be verified from Lemma 2-iii) and Assumption 2.

Based on the results shown in the above three steps, we coclude that B, (k) is exponentially
stable. This implies that an association of the @, and a, with the exponentially stable B, (%) is evi-
dent.

Next, we explore the norm bounded property of the forcing terms, E,5(k), Ese* (k), and
Ex(k), in (21a) as follows.

By virtue of Lemma 2-i), Assumption 2, Lemma 2-iv), and (2), we have

| B2(k) + Ese* (k) + Eg (k) ||
<K E® | + Kelle* @ | + Ks |l 7o) |l
2K 0 ) || + 7] + Kab, + Ks | 7 () | (28a)
where K1=021£w | B.(B) | KZ=0§1£® HE (k) | » K3=02:1£w Il B,(&) || . From (13¢c), we
know that u[ 3(r—n)m]*%+-4,/7,is an upper bound of || 4*(k) || , and 4, is an estimate of an up-
per bound of | 4°(k) || . Thus, if we can choose A< u[3(r—n)m]*%-+4,/r, for the estimation

in reference [4], then
| B + Bie® (0 + B || <2KLal3G — wmDt + 210 @7 ) ||+ 7,]
+ K46, + K3 |l » (0 || (28b)
<2ELA(3G — wns + 21 28 | +7.]

+ Kb + Ks || 7(B) | .
Now, comparing (22b) with (28b) yields

do = 2K, [u[3(r — m)m]% + -ff-],

G(B) =0, 7(k) = 2K,[p[3C — nd)m]% + %’-]ro + K6, + Kl r(B) | .

Then, applying Lemma 3, we have the following main results for the adaptive controller.
Theorem 7 With Assumptions | and 2, if the g in (10a) (a measure of the relative mag-

nitude of the modelling error) is bounded as

1 : — 0 2K,0,
< 2 . 1%
Isw< 2K 3G —m)m ]t [ o 7, :’ ’ (29
and the 4, in the estimation algorithm[*) satisfies
- 1 s,
0<a<uB30 —mm}t =, (30)

then the adaptively controlled close-loop system via the reduced-order controller is BIBO stable for
any initial condition in both the plant and the adaptive controller irrespective of the presence of
unmodelled dynamics.

Remark 1 The BIBO stable system has the following properties ;
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i) Z(k) €=, then y(k) €1, and u(k) €1~
ii) || Z&) || <o), as koo, where v(k) is the output of the system with the transfer
function

o
O = G T W
driven by 72 (k).

iii)
120 | <v® + [ @K, + K13, an
where v/ (k) is the output of the system with -the transfer function @ (z“‘),' driven by
Kall 7@ | - |

1 —0!2__21{1(5
Remark 2 The value 2K1[3(r—n)m]/5 .

the robustness of the adaptlve controller. It 1mphes that the adaptive controller is allowed to be

:I in(29) is obviously a measure of

perturbed by the modelling error &(¢) satisfying the xin (29). For the pole—ass’lgnment(al‘gorlthm
in this paper once we have selected the desired closed-icop polynomial matrix 4,(1) in (16¢), it
is possible to determine a; and a; a priori. As a result, we have the knowledge of the degree of

robust stability for the controller to be designed.

7 Conclusions ,

This paper has demonstrated that the state-feedback pole-assignment self-tuning controller!®]
has a certain stability robustness, As a result, the reduced-order model can be usedf to deslgn a ré;
duced-order self-tuner with suitaole conditions and the adaptively controlled closed—loop 6riginal
system via the designed reduced-order self-tuner is BIBO stable in the presence of unmodelled dy—

namics.
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