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Abstract; This paper addresses the finite- dimensional variable ‘structure control problem  for a
class of nonlinear distributed parameter system (DPS). ‘First, a finite-dimensional reduced order mod-’
el (ROM) is generated via Galerkin procedure; second; finite-dimensional variable structure controller
is synthesized to provide the approximate system with desired dynamics; finally, the asymptotlc behav- - ... .
ior of the actual closed-loop DPS with the designed controller is analyzed and some sufficient conditions
are given to guarantee that the actual closed-loop DPS has prescribed asymptotic bohawor when the ap-.
proximate order is predetermined. _ k k
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1 Introduction ‘

~ In many industrial processes, such as flexible manipulators, large flexible spacecrafts and
chemical processes, the mathematical models for these systems are described by partial differential
equations or functional differential eQuations.‘ Gen'érélly the state spaces for these systems aré in-
finite-dimensional. Most of the existing control methods in DPS control theory are difficult or im-
possible to realize in practlcal engmeermg problems because of the following common drawbacks.
first, controllers are often designed directly using the complete knowledge of states, and hence .
these controllers are infinite-dimensional , which make them 1rreahzable since the 1mplementatlons
are usually done with dxgxtal computers, and the avallable on-line computer capacxtxes are finite; '
second, structures or parameters of the systems are often supposed to be known exactly, and
therefore, in many cases, due to the lack of sufficient knowledge of the system, for example, in-
sufficient modal data in flexible robot arms with varying payloads, the finest control law in.theo-
ry applied to an actual plant often yields a poor result and even may produce an unstable system.

Therefore, to establish a finite-dimensfonal robust contro! approach for DPS is an area that merits
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investigation. ‘

It is well-known that sliding mode control approach plays an important role in the robust
control problems of multivariable uncertain systems, due to its ease irnplémentation and insensi-
tivity to system uncertainties or parameter vairations{®4'1%], This approach has been applied to the
control problems of DPS in recent years such as flexible structure systems, and some finite-di-
mensional controllers have been designed directly using various approximate techniques such as
mode-assumed method and finite-element method, but the stability analysis of the actual closed-
loop DPS has been entirely disregarded or only done by computer simulations in these papers. Ev-
idently, the stability conditions for the actual closed loop DPS remain unknown since those con-
trollers are designed only based on finite-dimensional approximate models.

The aim of this paper is to introduce a method for the application of variable structure con-
trol to DPS in Hilbert spaces. The synthesizing approach is presented using finite-dimensional ap-
proximate technique; sufficient conditions are gnven to guarantee that the actual closed-loop DPS
has desired asymptotic behavior when the approxxmate order is predetermined. The results in this
_baper indicate conditions under which finite-dimensional variable structrue controller designed us-
ing the Galerkin approximation will produce a closed-loop DPS with desired dynamics.

2 Problem Formulation

Consider the following DPS,

% = Az + f(t,z) + Bu, 2(0) = z,. . 1)
where the state variable z belongs to an infinite-dimensional separable Hilbert space V with inner

; the operator A is a linear closed and unbounded op-

product (e, +) and corresponding norm
erator with domain dense in V; f(¢,z) is Lipschitzian with respect to z and measureable with re-
spect to &. b ’

Control u(¢) is applied by m actuators with influence functions b in V.

Bu = Eb,vu;(t). 2.2

=1

Evidently, the formulation (2. 1) and (2. 2) represents a wide variety of DPS control prob-
lems. In order to design controller using the finite dimensional approximate knwoledge of the state
variable, we use the following Galerkin approach.

Let Vy and' Vr be the subspaces of V, Py and Py ‘be the projections onto Vy and V, respec-
tively, satisfying the following conditions

D V=Vy+Va

2) dim(Vy) =N<co; VyCD(4).

3) VyCVy TV,

4) Py is monotonously increasing with respect to N8,

Let zy==Pyx,23=Ppz, then (2. 1) decomposes into the following form

iy = Awzy + Awgrr + fn(tsz) -+ Bw,

2.3)
Zp = Apvzy + Aprr -+ fr(ts2) + Bru
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with the initial conditions zx(0) = Pyxo; - 22(0) = Prze. i (2.4)
' Ay = PyAPy, Ap="PpAPr, Ayg = PyAPp; Apy = PrAPy
{szPNf1 fr= Pgf, By = PyB, By == PgB.
The finite-dimensional approximate model of (2. 1) is produced’ by ignoring the residuals s
in (2.3) | |

where @5

By = Aviw + (i) + Byu, iy = Pyap. @y
All parameters except Az in (2. 5) are bounded operators since Py has finite rank: The
above approximation is often called the Galerkin approximation. Particularly, if the spectrum of
A can be separated into two parts o(Ay) and o(Az), where o(Ay) consists of N isolated eigenval-
ues of 4 which can be separated from the rest of the spectrum o (Ag) by a smooth closed curve in
the complex plane, then there exist above space decompositions such that Ay and Az have the
spectrum o (Ay) and o (A4g) respectively, and these subspaces are ’A~invafiant, that is '

Apy = 0 and Ayz = 0. (2.7
and also called modal subspaces since V :span{q)l sy sy}, Where @, are the mddal' Sk\ap&sor
eigenfunctions of the operator A4 which correspond to the eigenvalues A in o (Ay). For a singlé—q
link flexible robot arm, we may use this approach to determine the state spaée decomposition.

Suppose that (4w, By) is controllable and Ay is an infinitesimal generator of a strongly con-
tinuous linear operator semigroup Tx(t) on Vy such that '
| Ty (O | < Kyexp{— ont), (> 0. (2. 8)
Otherwise, it only needs to introduce a finite dimensional gain matrix since (Ay,By) is assumed
to be controllable. Besides, the residual operator Az is assumed to generate a stfongly continuous
linear operator semigroup T»(¢) with the following growth property '
W 7w | < Krexp{— ont}, (=0. (2.9
Using a similar proof to the Theorem 2 in (27, we obtam the followmg convergenca :
result. ‘ '
Theorem 7 Under the above assumptions, if
D) lim || Apwz || =0, z€V.

N—»oco>

2) A generates a strongly continuous linear operator semigroup T (¢) on V,

3) there exists L>0 such that lf¢a) | <Lz ;

4) control u(¢) is absolutely integrable.

Then, over any finite interval of time, we have

lim [ 2x(0) = 2(0) |

Therefore, both from the theoretical and practical standpoints, the above Galerkin approxi-
mation is proved to be rational. However, for practical control problefns, it is difficult to deter—‘
mine a proper approximating order N only using-prior knowledge. It is therefore necessary'to es-
tablish a simple off-line approach of selecting suitable approximate order N for DPS contorl prob-

lem. In this paper, we will design the finite-dimensional variable structure controller only using
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the above approximated model and indicate the conditions under which the actual closed-loop DPS

with the proposed controller does have proper asymptotic behavior. It should be noted that, due to
the involvement of the variable structure control, the condition (4) in the above theorem 1 is no
longer valid. However, we can use the regularization principle (see [1]), and for the regular-
ized systerﬂ , the above conditions in theorem 1 are then satisfied.
3  Design of Variable Structure Controller

Since the approximated system (2. 6) is finite-dimensional , feedback controller can be de-
signed using the variable étructure control theory of finite-dimensional systemsf1), Let the switch-

ing manifold be §==DyZy== 0, where Dy is an mX IV constant matrix to be determined. From (2.

6) it follows that

S’ = DyAnZn ~+ DNfN(t,x) + DNBN'“' (3‘ l)
Using the equivalent control principlet*), we obtain the equivalent control % from (3. 1)
U, = — (DyBy) ~'Dy(Aniy + Fu(ty3n) (3.2)

where DyBy is assumed to be invertible. Substitute 2==% (3. 2) into (2. 6), we obtain the sliding

mode equation of the approximated system

iy = Uy — BN(DNBN)_IDN:][ANE:N 4+ fn6zn ],

- 3.3
DNZN = 0-
Since rank (By)==m, there exists nonsingular matrix Uy such that
0
UyBy = L) 3. 4)
Then (3. 3) is reduced to the equivalent form
2y = Awmzm + Awzznz + I Ur 2w

(3.5

zyy = — I'vem
where zy==UxEy==zm -+ 2Znz> 2 EVyCVy, i=1,2. Vyare the subspaces of Vy such that Vy==
Var+ Ve, dim(Vy))=N-m, dim(Vy) =m; Py (¢=1,2) are the projections on Vy; (z==1,
2) respectively, and
Ay = PolUyAUs' Py, 8= 1,25 fni = Pmfu; I'y = DiiDwis  (Dwis D) = DU
" Since (A4y,By) is controllable, so is (Ayy » Av2) (. Therefore the eigenvalues of Ayi— Anal'y
can be assigned arbitrarily by a proper choice of I'y. Let DytDy=Ty, i. e. Dyy=Dy;I'y, then we
can determine the switching manifold in original coordinates as followst10]
S = DNZ(FN9Im)UN{E-N =0
sothat the linear part of the sliding mode equation (3. 5) has desired exponential decay rate to ze-
ro. Without losing of the generality , we suppose that Ay — Axz'v generates a strongly continuous
linear operator semigroup T (&) on Vy, such that
| T | < Kyexp{— omt}, ¢t==0. (3.6)
where Kyi-=1, om=0 are constants which can be assigned properly. Particularly, if the eigen-

values of Ay, — Awel'y are assigned to be isolated and located in the left complex plane {A|Rei

<“O’N1} s then KN1=1~
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Writing the solution of (3. 5) in the integral form as follows

t . '
am® = Tn O (0 + [ Tnt = Dim(r U@ @1
‘ - IN—m i —
and noting that ZN2 EER PNZNI , XN == UEIZN = U;val . AN1 ___,A___ I-'NZNI' .
- N
we obtain || zv(8) || < Kwe ™[ || 23 (0) ]+ LNJ e’ ” Tyl || zm (%) “ dv]
where Ly is the Lipschitz constant for fy. Using. Gronwall s inequality it follows that
zn(O) || < Kme K 1Ty “ mowpt ” Zn (0) I 3.8)
Therefore, in original coordinates, we know that the sliding mode satisfies h
” Ty (0 | < || Ty [ Aere(LNKNl BTyl —oy G~ | Zu(lo) I, | (3.9)
Hence, if the following condition is satisfied k
12 AN A on LNKNI | T ” > 0. (3. 10)

then the sliding motxon is exponentially stable.
In general, the Lipschitz constant Ly for fy can be selected as L since || Py || <<l. From
(3. 10) we conclude that the sliding motion is stable only if the nonlinear part is relatively small. .
The robust design of sliding mode will be $tudied in separated paper. s e
Second, we design a variable structure controller to guarantee existence of the designed slid—

ing mode, Let

= — (DyBy) " DnAndy + Dyfn(t, Xy) + Eysgn(S)] 3.1
where By=diag (¢xi)mym> tm>>0, sgn(8)=5/| 8| . Then from (3. 1) and (3. 11) we have
S = — Buwgn(s) , : 3.12)

which implies existence of the sliding model'®). Therefore, the closed-loop system (2. 6) with the
designed controller as above has desired properties.
4 Asymptotic Behavior of the Actual Cldsed—lmp DPS ,

The finite-dimensional variable structure contfoller designed as above is only based on the
approximated model (2. 6). Of course, it must operate in closed-loop with the actual DPS- riot
just the approximated system. It is therefore necessary to analyze the stablhty of the actual
closed-loop DPS with the proposed controller. :

Let ey=¥y— Xy, then the actual closed- loop DPS is given by

( Iv = Avy + fx(t,%x) + Bwu,
]J éy = Avew + Awp¥r -+ fu(t, %) — fu(t, %), , [CERD)]
l I = Awvey + Anfn + Aw¥y + falt,z) + B
where the control u is given by (3. 11), ¥=%y+ey+ Yz
First, we analyze the boundedness of the solutions for (4. 1) Before the sliding fnotion oc-
curs. From (3.11) and (4. 1) it follows that . ' .
) izv = [Iy— By(DyBy) " 'Dy ][ AvZy + vt 4] — By DyBy) ' Eysgn(S). (4.2)

The solution of (4.2) can be represented in integral form
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Tn() =Xy (0) + J;[IN - BN(DNBN)—_IDN][AN—ZN + fu(t, Xy Jdr

- J;BNwNBN)—IEMsgn(S)dv. (4. 3)

" To note that, before sliding motion occurs, one has || S| #0, which implies
I sgn(s) | < 1. : (4. 0

Therefore there are constants ¢; (4==1,2) such that
— — t -
M2y || < § %O || +Cit + C, . | ¥wCe) || dv
whete  C) = || By(DyB) "By || 5 €2 = || [In — Ba(DyBw) "Dy || (|l 4x || + La).
Using Gronwall’s inequality , we know that || Zy(¢) || is bounded, which implies that «(¢)
is also bounded before the sliding motion occurs.

On the other hand, from (2. 8) and (2. 9), we know that ey, ¥, satisfy

en() = Ty(L — to)en(lo) + J Pt — D[ Awatn -+ F(0,0) — fu(z, %) Jd7,

0

zp(t) = Tr(t — o) %p(te) + J‘;TR(L — D[ Awsew + Awy + fr(7,%) + Bu]dr -
which implies '
lex@) Il <<Ewe™ ™ || ex(to) |
S P R EA R E I P P .6

| %() || <<Kae %7 || %alo) |
+L Kee % | v | (llew |l + 1% 4+ Zell 2 4+ [ Bell 2|l Jd=
<K38_”"(t~l°) I %) |l

*J Kre 00| dpv |+ Lo Cllen | + 1 %00
ty

+ Lell %Ml 4 I Bell 2] Jdv, .7
where Ly is the Lipschitz constant for fz such that Lp<L. Let
{ e =ex(®) + %0, e = lex®| + %@, (4' 8
opy = min(op,0x)s Knp = max (Ky,Kz). '

‘ Using (4. 6) and (4. 7), we obtain

: I
e || <Kwe™ ™™ | e | + szj e || By || | u | dv
!

0

+ KNRJ:e“"Rfv“"’[( I Arw |+ L) | Zx | + (I Ane |l + Ly + L) 1| %2 ||

(]
+ (| Ave |l + Ly + L) | en || Jdv.
Therefore, using the Gronwall’s inequality , one knows that ey(¢) and X(¢) are bounded,
since ¥y(¢) and u(¢) are bounded before the sliding motion occurs.

Second, we analyze the asymptotic behavior after the siiding motion occurs. In this case,
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the control u takes the value u,. From (3. 2) and (3. 9) it follows that
el << Il DuB) =Dy | Cll Ax Il + L) | Ty | Kie™7% || o |l
DGye™ % | ZnCo) | - R C )
From (3.9); {4.7) and (4. 9) we have ' g ‘

J Kre T A | + L) | 2 | + 1 Ball el Jdv
Y

: — = b () 1)
<Kl Arv | + L) | T | Bm + Gl Il T o) || J," R G
0 : .

DGy || Xyt |l e TV g(0) , (4.10)
" ® t— {y, if o = Yy
whnere =
g e(”n_yN)(t"tO) ; if or ._?é Vs ; (4. 11)

K[ Cl| Apw || + LR) | T ll Ev + GN]
— Yv .

Therefore , if yy>>ug, then one has l[ g(® || <. Using (4.7), (4.10) and (4. 11) we

KR[( ” ARN ” +'LR) " Ty ” Km + (YN]9 if or = yy»
Gur
{ if op 7 Ya

have

N n® | <o s K|t | + Gl 2o 1] | |
+ Ka ﬁoe—f'n“f“[( D s |+ o) el + Lnll sl Jav. (.12
From (4. 6) and (4. 12) it follows that } , ' o
e | e ™ [Kgl 2(to) | + Gma || ivzv(to) ” + Ky “ en(to) ” ]
+ R PRI Lo + KnLy] | ex || dv

, :
n J T Ava || 4 L) 4 Kale] |2 | do. (4. 13)
0
Let { LRN=max{KR | Aax || oK w I f‘lNR Iy, 1)
u = ory — (Lpy + KnLy -+ KgLg). o

By (4. 13) and using Gronwall’s inequality , we obtain : :
e | <[K: | zzCe) |l ;4‘ Ky |l ex(to) |+ Gurll Zv(4o) i ]ewﬂ(l_to)- : (4. 15)

From the above deductions, we have ' ‘ A

Theorem ? The actual closed-loop DPS with the desxgned controller (3 11) is exponentlal—
ly stable if the following conditions are satisfied '

1) The operators Ay and Ap satisfy (2. 8) and (2. 9) fespectiyely;

2) The sliding mode of the approximated system satisfies (3.9);

3) yy>>op and p>0. ' '

Therefore, when the approximate order N is fixed, kth’e above conditions guarantee the expo-
nential stability of the actual closédfloop DPS (2. 1). Evidently, the larger the approximate or-
der N is, the better the provided dynamical property is:
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5 Conclusions

In the development of feedback contro! theory for DPS, it is important to maintain the fi-
nite-dimensionality of the controller. If the “modes” of the DPS are known, the natural approach
for model reduction is projection onto the modal subspace spanned by a finite number of critical
modes. However, in real engineering systems, these modes are never known exactly. In this pa-
per, we develop a novel approach for the design of variable strusture controller using only the fi-
nite-dimensional approximated model generated by the Galerkin approach. Sufficient conditions
are also presented to guarantee that the actual closed-loop DPS with the designed controller has
proper dynamic properties when the approximate order is fixed. It therefore provides an imple-
mentable robust control approach for the control problems of distributed parameter plants. The
application of this approach to flexible robot arms and the finite-dimensional variable structure

control problems of DPS using only outputs will be reported in separated paper(®l. .
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