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Passivity , Stability and Optimality

QIN Huashu and, HONG Yiguang k
(Institute of Systems Science, Academia Sinica-Beiiing, 100089, PRC)

Abstract; In this paper, we consider passivity, stability and optimality and the relationship be- -
tween them of affine nonlinear control systems. First, we study relations between the passivity of
_ nonlinear systems and one of their hnea.r approx:mate systems in order to analyse stabihty Then we
kshow that for affine nonlinea.r systems passmty, stabihty and optimality are equwalent via feedback in
some sense. Finally, we go further to discuss tbe systems wnth measured outputs '
e Key words; passivity; stability; optimality; affine nonlmear system

-1  Introduction
, Pass1v1ty, whici: was denved from network theory and other branches. of physics, has be-
come one of the powerful concepts to study control systems. ' In different cases, it changes a httle
into other similar concepts, for example, positive realness and dissipativity. With its deep physi-
cal meaning and its close relation with Lyapunov furiction, it has bwn applied widely , such as in
analys1s of stabilization of nonlinear systems[gj in control systems design(''J, and in robot con-
trol1%), Therefore, there are many research activities, including [2,3,7] and [4], related to
_passivity or passivity via feedback. In particular, after a summary of these works, [3] shows
that it plays a key role in the stability or stabilizability of nonlinear systems. B
Before dlscussmg the problems concerned with passwity, we, mtroduce its . definltion at
first. ——
Consxder an affme nonlmear system L T N L
b= G+ g, € R e
y——h(x), u;yER’“ , o (1. 1b)
where f, gs hare smooth w1th £C0)=0, 4(0)=0,, g(O)#O ; o L | .
, We review some of basnc concepts, which w1ll be used m the followmg sections (referred to
[3] for detalls) ; o , o i ,
Definition 1. 1 The system (1 1) is called to be passive if t'here exists a cohtintlous non-
negative function V;R*>R, called the storage function, such that for all uER”‘, a:‘)GR‘ t>0,
the followmg mequality holds«

V(x)—#V<m°>«<ﬁf<s>u<s>d,s | W
and V(0)=0. ‘ i skt b : 7
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If V is a C! nonnegative function, then by [ 3], (1. 1) is passive if and only if
Ly () <0, (1.32)
LV (x) = k(z) (1. 3b)
tor each z €& R®,
Definition 1. 2 The system (1. 1) is locally zero-state detectable if there exists a neighbor-
hood U of 0 such that for all €U
h(®(t, z, 0)) =0 forallt =0
implies .
lirnd)(t, z, 0)=0
where #(¢, z, 0) is the trajectory of (1 1) with initial value z in ¢==0 without control. In addi~
tion, if U is the whole space B", then the system is zero—state detectable.
Definition 1.3 A passxve system with storage function V is said to be strictly, passxve if
there exists a positive definite functlon 8§ :R*—R such that for all ¥€R™, ¢=0, it holds,

) V(z) — V() = ﬁyr(s)u(s)ds ~ ES(z(s))ds RN C

Definition 1. 4 The system (1. 1) is passive via (state) feedback if there exists a control
i ; ' o ; , ,

k ‘u = a(z) + p(x)v
‘where a(z) and B(x) are smooth vector-valued and matrix-valued function respectlvely, and
B (=) is invertible for all z, “such that the closed- -loop system

= [f(2) + g@a@)] + ¢()B@)v, ,
; ' 1.5)
y = k() ‘
is a passive system.

In the 1960’%, Kalman first solved the linear quadric inverse optimal control probleml1],
Since then, there have been many papers related to stably optimal control problem and its inverse -
optimal problem. [ 5] considered the relationship between positive realness and optimality in the
linear cases, while [6] involved that of control Lyapunov function and optimization.

In this paper the relationship between passivity, stability and optimality is discovered. The
paper is organized as follows; First, we introduce linearization of 'noniihear systems in order to
disciiss how to form storage functions for passive systems. Then we study the relationship be-
tween passivity , stability and optimality under the state feedback. Finally, we cénsider this prob-
lem for the systems with measured outputs. -

2 Linear Approximation

Difficulties to find storage functions for systems prevent us from applying passivity widely.
If we can linearize exactly an affine nonlinear system, then we will have a way to check if this
system is passive (or passive via feedback) and to construct a storage function of the sysfem. Un-
fortunately , by [8], there are few affine nonlinear systems which can be lineatized exactly , and

linearization pracedure is quite hard to put into practice. On account of the fact, it is necessary to
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consider linear approximation in the nonlinear case.
Consider the system (1. 1) and its linear approximation system
& = Ax - Bu,
gy =02 @. 1)

_of h
where A—ax s’ B=:¢(0), C== E

It is easy to get the following;

Theorem 2.7 If (1.1) is passive (or passive via feedback), then so is (2. 1).

However, its inverse proposition is quite subtle. I.n’ general, we can only get some local ré,—

" Theorem 2.2 If (1.1) is strictly passwe via feedback, then (1. l)ds locally stnctly pas-
sive around z=0 via feedback.

The proof is based on the results of [37], Notlce (1. 1) is still locally minimum phase and
relative degree {1, ==, 1} at z==0if (2. 1) is so.

Remark 2.3 For global stability, it is meanful and important to get (globally) strict pas-
sivity [3,9], but, generally, it is impossible because of the nonlinear complexity. However, we
can analyse a special class of nonlinear systems. For example, we consider ,

@ = f(2) + Bu, z € R" ; (2. 2a)
y = Czx, u,y €& R" ; (2. 2b)
where f(z) is a homogeneous poiy,nomial vector field of odd degree. Based on [107], we know
that if there exists a real # Xa symmetric positive-definite matrix P, such that
PB.= ("
and kerC = {2 € R*:2"Pf(z) < 0} UJ {0}.
Then (2. 2) will be strictly passsive ‘)ia feedback.

Theorem 2. 4 Consider (1. 1) and (2. 1) in the SISO case, if (2. 1) is stnctly passwe,
then (1. 1) is locally strictly passive.

Proof If (2.1) is strictly passive, then we can find a symmetric positive—defihité métrices
P, Q such that

Vo = 2Pz,
LuVy = a*(PA + AP)z =— 4'Qs < 0,
(LpV )" = B"Pz == Ca.
To find a suitable V to satisfy .
LV <0, LV =A% 2.3
Assume Va=Vy-+V,, Vi=o0(z?).
Rewriting (2. 3) in detail, we have
@O+ VT + (LY)T = Co + o(x)
or equivalently
L) = 1(x) 2. 4)
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where [(x)==0(2) is an infinitesimal function with higher than first power of z.

Notice that (2. 4) is a partially differential'equetion with one order and ¢(0)3£0. By virtue
of theory of differential equation, (2. 4) has a solution V; (z) with initial value V;(0) =0.
Therefore, we get V() =V(x)4V,(2) which satisfies ;

(LY DT = h(x)
and '
L =— 4%z + o(a®). (2.5)
Hence 5 there exists a nelghborhood U of g== 0 such that LfV is stnll negatxve definite 1n U. Then
the result follows.
3 Optnmal and Inverse Optimal Problem

This problem has been solved by Kalman and studied further in [5] in the linear case,
Here , we will get correspondmg conclusions in the nonlinear case.

" Theorem 3. 1 Consider an affine nonlinear system , , o
¢ = () + g()u, L @G.D

where z= 0 is the equxbnbnum as uw—-O and a performance index
J(u) = L [28(®)) + w"©u() ]dt (3.2)

where f, g are smooth, and S(z) is a given positive-definite function. Then we have
1) The optimal control z* (z) can be written as

u”(m) = —!—(aa]m

2
where J* (.i) is the optimal performance index value of (3.1) (3. 2) with the initial point z.

) T

2) u* (z) makes the optimal closed-loop system

& = f(x) - —-g(x)(

be asymptotically stable.
3) If we take the output y as follows;

aJ
y=h(x)é%‘(a g

k
Then (3. 1) with y==h(z) as its output is passive via feedback.

Proof The proof of 1) 2) is regular, we only consider 3). We take a storage function ¥V

V == %—J*‘(x).

It is easy to know that V is nonegative and LV =hk"(z). We claim that L4p V< 0. In fact, itis
the same that LpypJ * (2)<70.
Notice that J* (z) and «* (2) in (3. 3) satisfy the following equality .
LJ* + LJ*u* + 28(z) + »*"u* = 0. , G 9

Hence
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Lipprd * (8) =~ 28(z) — u*Tu* <0,
therefore, the result follows::
Conversely , we have to add some conditions to get the inverse results in the similar form.

Theorem 3. 2 If the system
¢ = [£ @) — F9@hE] + g@w,

y=h)Qa— v @ ,
is passive. Then there exists an performance index in the form of (3. 2) and u (w) is Just opti-

(3.5

mal control of the system (3 1) with this performance index.”
Proof By passivity of (3. 5), we have the storage function V(2) =0, such that
L[f(z)*z—v(z)k(z)]v(x) < 0 ' s
and LYV (@) = K@),
Set 8(e) =— Lm,)..lf,@;mrf'cz‘)‘ o S G
Obviously, it is nonnegative. o ‘ B
~Take the performance index like (3.2) thh S(m) in (3 6) “

J = Ja [28@@)) + " (©u(z)]de
and define W(z) A2V (z). Then we have =~ :
u (x) = h(x) o --(L W)T STy B (13,3 7)

By (3. 6), we see that W(x) and % (m) satlsfy
H(z,;u*) = LW -+ LWu* (:c)*;—{- 28 ()i w B (@)u (g) ==
On the other hand, for ény given. du which constitutes,;u(gs) =y" (x’),+6u(z) to make cotre-
sponding closed—loop system asymptotxcally scable, we have’ ‘ ‘ :
H(z,u) =L W - LWu 4+ ZS(m) + u"'u
= (&u)r(&u) > 0.

Hence o , .
JTu*] = W (a0 =J (257 @) + 17T (e e (e (D)o < ]

i. e u* (2) is a optimal-control; where z* (£) denotes. the optlmal'trajectory with mirtialfstaté: % in
t=0. ;
4 Nonlinear Systems with Measured Qutputs

In practice, the states of the systems which are used for analysis or control goals can not be
got directly from measurement. Therefore, we have to consider how to employ measured outputs
o deal with problems of analysis and desxgn . SR e

" Here we investigate a problem similar to the above sectnon 5 whxch is restrncted to use output

static feedback control. | e

Consider (1.-1) and define a control set ;..

2L {w =) |p(0) =0, ¢"(py > 0; if g0} o v @ 1)
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Theorem 4.7 If the following conditions hold ;
1) (1. 1) is passive with the storage function V' (z) which is positive-definite and proper;
2) (1. 1) is zero-state detectable.
Then u* (3) L —ky € 2/ (k>>0) is an optimal control of (1. 1) with some performance in-
dex in the form of

J[u] = J “[28GM) + TOIO + o OuO Tt (1.2)

g>>0 const. ;
Proof Since (1. 1) is passive with gorage function ¥ (z), we have
' S(z) L—L¥V() =0, LV() = i(2).
For the S and some constants k>0, ¢>>0, we define L(x) as follows:

L(zyu) & 28() + v + th(x)h(z) , (4. 32)
S@) = kS’(z) - (4. 3b)
Consider Bellamn equation in the following form .
HW(:c) HW(x)
@ L, )}
W) =

Denote H(z,u) QLW +LW « u+L(z,u) and take W (2) Q28 (z). It is easy to verify that
W(a:) and »* (z) .

u (z) =— k[L,V(x)]T - l[L,(x)W(x)]T‘ (4. 5)

constitute a solution to (4. 4). If we choose 4 s then u* (z) defined in (4. 5) 1s just the opti-

mal control of (1. 1) and (4. 2) with § (z) defined in (4. 3b) in the following sense
J[u*] = L L(z* (£),u" (0))dt \J L(x(t),u(t))dt Il

Y v € P/ defined in (4. 1), i.e.
] =[2G @ )< (16w @ = i),

Y u=u*+ouEZ.

Remark 4.2 Unlike the results in the above section, the inverse proposition of Theorem
4. 1 is quite hard to be solved.
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