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Abstract; In the presence of the unmodeled dynamics, one common and important concerd ishow .../
" to remove the noise-induced bias in the %timaneiof the transfer function, An extension to the hewly €s-
tablished BELS method is made in this paper. When the unmodeled dynamics is decribed by a finite im-
pulse response (FIR) model, it can achieve a’ unbiased wtimate of the transfer function without thek' ’
priori knowledge about the probability density functions (PDFs) of the noise and the dynaxmcs [
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1 Introduction

In general, the transfer function of a practical system is difficult to determined very accu-

rately. Usually only a low-order nominal part of the transfer function can be identified by using -

the input and output data. Therefore, the presence of unmodeled dynamics is inevitable, and’ it
-will affect the process of identification. How to accurately identify the nominal part of a transfer
function in the presence of noise and unmodeled dynamics Is an interesting task. Tms problem

was studied in [17] under the assumption that the unmodeled dynam1cs can be suffxcxently closely;

approximated by a FIR model. A maximum- hkellhood technique was developed in [17] based on-

the priori knowledge that the probability density funcuons (PDFs) of the noise and the unmodeled '
dynamics are known. However, it is usually difficult or even impossible to obtain these PDFs in
practice. In [17] only the bound of the unmodeled dynamics can be known. In this paper, it will :
be shown that when the unmodeled dynamics is described by a FIR model, not only the nominal
model but also the FIR model can be identified unbiasedly wiﬁhoﬁt priori knowledge ‘abyout the
PDFs.of the noise and the unmodeled dynamics. | Fi

In order to obtain the consistent estimates of the system parameters, a bla.s—ehmmated !east'
square method (BELS) was developed in [2~47. In this method, a known prefxlter Was mserted
into the identified system so that the augmented system has some known zeros which can, based
on asymptotic analysis, be used for eliminating the colored-noise-induced biases in the ordinary
LS estimates. Since the unbiased estimates of system parameters can be ob'tai'ned‘by' thé BELS
method without any priori information of the noise model, this method possesses good robustness
‘with respect to the measurement noise. In this paper, the BELS method is used to deal with the
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probiem in [1].
92 Problem Formulation
The aim of identification is to estabiish a model for a dynamic system by using the observed
data of the inputéoutput data sequence - Z¥ = [uss9s], Where the observed data Z¥ are assumed to
be generated by the system described as k ‘
g = Gr(g™Du + H(g Ve ' ey
Here Gr(q~1) and H(g™!) are rational transfer functions in the backward shift operator ¢~ .
Both of them are assumed to be asymptotically stable and have no poles in the region |¢ql>=>1.
The disturbance sequence e, and the input sequence aré assumed to be quasistationary according
to [5]. They are also assumed to be uncorrelated with each other. Without loss of generality , ‘e
is assumed to have a zero expectation, i. e. F[e,]= 0, where & [ -] denotes expectation
operator,
The stable transfer function Gp(¢™!) to be identified can be divided into two parts .a simple
nominal low-order parametric part G(¢~', 6¢) and a more complex part of unmodeled dynamics

Gs(g™") , namely,

‘ Gr(g™) = G(gY, o) + Galg™D. (2)
1n general the transfer function G(qg~", 8) can be characterized by using a form as
' B(g! b=t A bogE A e - bugT™
G, o = B L . 3

Al D T T+ agt agg ™t 4 e e

Thus the parameters to be identified are the coefficients, denoted by the vector o= [a1 N7
o sty ybyy oot sba FERM™, in G 60). '

1f the unmodeled dynamics can be described by a FIR modet [1], i.e.

Gu(g™) = ¢ 4(nlg™" 4 miqt + o kg @
then the system equation (1) can now be rewritten in a signal-regressive form as follows.
o= @hoy + ¥in + s 5
where
c oo = (1 Bz o s Yims Bty 0 )T € RO, k (6)
P = (g1 sUai—zy yip—gnp ]t € R, | (7
n= (Mmoo sy’ € R : : (8)
v = A(g"DH (g Dey €D
and 7 (i==1,2,e=,n-L) is the coefficient of the term ¢~ in the following equation; ‘ ‘
(™)) = Ga(gDAQ™) = g~ A mg? A o A g™ O o
Using the notations k
= (1,0, @n]s an
WT o= [y, 4,00 Py v a2
YT = (1,020 5wl , ' (13>

Vector 8y is the LS estimate of 6, and is given by
Gy = (PP 'Y, NeT))
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When N tends to infinity, from the asymptotic property of the LS estimate we can obtained

(4] ~ . _
6* A1rnmel\, = 00 + RylR + Ry an, _ (15>
e = BLpwpt]s R@-&EE%L, Ry =E[ogf), (16

where 9, is the true parameter vector.
(15) shows that the LS estunate for 6, in the presence of a colored nonse and unmodeled dy~
namics is certainly convergent but. asymptotlcally blased The asymptotlc blas vector is given by
40 = RZR,, + R an. ‘ ' (1
It follows from (17’) that the bias conmsts of two parts one is caused by the noise, the other
is caused by the unmodeled dynamics. If there i is only noise and no unmodeled dynamxcs, the bi-
ased-eliminated-least-squares (BELS) method proposed m [2~4] can be dxrectly used to obtaln
the unbxased estimate of transfer functlons. In thxs paper, the BELS method will be used to estl—
mate the transfer functions descnbed above. It w1ll be shown that in this case the bias caused by
noise can also be eliminated. Furthermore, it will be shown that the unmodeled dynarmcs can al—
so be correctly estimated if it is defined by a FIR of known order.
3 Bels Method o |
" Note that (15) can be rewritten as
8 = limdy — 46. o U®

N-»oo

It shows clearly that an asymptotically unbiased estimate for 60 can be-obtained if the bias o

term 46 is extracted from the LS estimate of the unknown parameter vector., The main point of

this section is to study the method for estimating 46. In:the expressioh of .48 given by an. g
and R,, are unknown veciors where 7 is defined by (8) and Ré,,, is givenin [4]as :

w = [70(1)370(2) y 0,7 (1), 0,0, 0] € R7F (1Y)

Therefore, 7 and &, should be estsmated in order to estimate the 46, : . e

In the same way as in [ 2], a dlgltal fllter F=1(g™1) is connected to the system at the 1nput

terminal, wher F (q“l) is defined as

F((fl) 1+f1(1 1“*“fzél Z‘*""f’fz-uq @D (20)
F(g™1) is designed to be stable, namely, the polynomial :

F*(g™1) == qBFD o frg@HEmD A vee ok flouin =‘q(2“+”F(q”1) ::(’z;},

has all its zeros located strictly .ingide the unit disc,:« e Gl ', S
The filter F~1(¢g™1) is inserted to form an augmented system artificially. The augmented
system thus obtained is expressed by the model R . ey :
A Dy = B(g D + v+ ¢ TI{q™ 1)uk, : e @22

. where ' :

B(g™) =F(¢"DB(™") : L

w=bigl 4 bgmt b e dbg ™ m=mob 20 Ly (23)
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TI(g™) =F(g Dalg?)

=7—)qu‘ + 9g 2 F o + g L=3n+ L,

Uy == -if—(ql—_rfju,
Rewriting (22) in a signal regressive form gives
. = &éo + w;) + Vs
with ‘
97» == [:!I»uﬁ——zf" sYr—nsh—1s Vit € R**,
7’; = [Ty sBpi—zs*** aﬁk-’-d—ZJT € RZ, k
= [01’429"' ,a,,El,--- ’Bm]T/E Rt \
7= (175 s%0rs]” € RE. '

(24)
'(25)

(26

In a similar way, the LS estimate of the parameters of the new model (22) based on N ob~‘

served data Z¥=[{%, {z}], can be obtained as follows
b1s(N) = (MT) Y € R"*“‘
and an asymptotlc analysns gives

lim OLS(N) —'60 -+ 46

N—»oo
o | =8 + RFa + R Ro,
where Rav == [R}‘v;OJT = [Tw(].) go0e ,rw(n);o’ - ,OJT E R‘"H’"
= [%9%2;"' »Pn T € ROFOXN,

Ry = hm __Z“ (Gl € ROTWXG+m

e —— — T M XD |
%~qﬂNL<m>eR*x

27>

(28)
29
30)

(31) .

32

It is to be noticed that the (2n-+1) known zeros of the augmented system are just the zeros

of F* (g). By using these known zeros, Ry and 7 can now be estimated. Let 4,(1=1,2,

"L) be the zeros of F*(g). This impliés that the following equations hold
B* (%) =F*(X)B* (%)

=Elm—1+52}?_2 +V"',+ Bm =_0) i=‘l,2"",2ﬂ+L,

I* (&) =F* (R MBYE + pdi P72 4 oo 4 gayy

=pA 4 A b e =0, i=1,2,,2n + L.

where B* (¢) =q"B(¢g™'), B* (¢)=¢"B(¢~") and IT* (¢) =q"II (g™ ).

. Let us introduce matrices H, and H, defined by these. known zeros as follows. -

F A, e, i
HY =] 0 | ey, e, N ] € REGHDXG+m
l—. ‘ 3 ar LI PN IJ .
I O ' |
HE = | evey  woe,  een,  eee| @ RGHDXE
AE3e, ey Azegrs 1

’2ﬂ+
(3D
(34)
(35)

(36)
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Then (33) and (34) can be expressed in a compac_t' kform _ R ,
‘ ' Hfy=0, s (3D

CHR=0. (38)
Multlplymg the matrxx H in both stdes of (28) glves i 2
| o lim bis(N) = HIR B + HIRSRgr, V (39)
Equatxons (38) and ( 39) can also be rewntten in a matrix form '
[oE 0 ] e
40) ",
LHTR L - meg LR,,J |t tim Bis (V) | (
It is straxghtforward to COnclude from 40) that :
A1 m o]~ 0 |
= - . 4
7l ~ lrging | lim 815 i
with | HUEG = [HusHi), Hy € ROwDXe, : 42

Asymptotic bias A0 can be determined from (41),.(42);.(28) and (29) The. calculatxons
presented above can be performed by the followmg algonthm

Algorithm'l e S

D Desxgn a suitable, stable filter F‘“‘(q”‘) of order 2n+L, and connect it to ;the'inpu_ta;;teri-’f o
mmal ’I‘hus the original system is augmented , ,'

2) Estimate the parameters of the augmented systm by usmg the ordmary LS method , whlch:‘

glVCS A . : . . i
o emw)—-ﬂ-—l(zv)zz;,(zv) . | _(43)
3) Calculate the correlation vector R— (V) and the parameter vector 5(N) by '
[V 1 H} 0 77 0 Voo gt
Ru>] = Lirtng ) .
WL R DR BuaD) (thean] g
Hikg! (N) = [Hu(N)3Hp(N)],  Hy(N) € R&F0%, - - (45)
R (N) = [EL(N);0]".. e Colnei g e 0 SABNE
4) Calculate the bias veétor and estimated parameter vector as L :
A8 pms(N) ——-R=1<N)[ »<N);0]T+R—J(N)R,,;(N)n(zv), un
Bpas(V) = Bis(N) — ABms(N). o e L AR Y

5) Compute the estimate daps(NV) of the original system parameter vecotr 00 from OBM(N )
(see (33) and (34)) Y en

In the above algorithm, Rz (N ), Rg,;(N ) and Rz (N) are the- estunate of Rzl Rv,; and R—
respectxvely They are defined snmxlarly as in [47]. The. ~algorithm can be carrled out
recurswely ’ ! :

Algorithm 2

1) Design a'suitable, stable filter F~1(¢~) of order 2n+ L, and use it to conduct real-time
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filtering of the input data, which is- equwalent to inserting the filter into the identified system.
2) Set the recursive initial values for 6w(0) and P, properly with ¢=0. ‘
3) Estimate the parameters of the augmented system by using the standard recursive LS
method, which gives i B

B = Fist — D + Paly® — Fous — D1y | (49)
“Pp= P — P_ip[l + ol Py R ) R 50)
where ' P = [Zﬁﬁ]“l : (1)
k=1 N
4) Calculate the bias vector and estimated parameter vector as
7 (t oo o 7t 0 .

or_r om0 e &

R, () HY(WPORz()  Hu () laraso)
48 gms(t) = (PLEL() ;0T + PO, | (53)
Bone(t) = Bus(®) — ABams(®. | (54)

5) Compute the estimate Bams(N) of the original system parameter vecotr 8y from Spms (V)
(see (33) and (34)). '

6) Repeat step 3)~5) untilAsome convergence critefien has been reached.
4 Convergence Analysns ’

Before proceeding to analyse the convergence property of the BELS algonthx'mpresented
above, let us first recall a conclusion given in r21. ' ‘

Proposition 1 As N approaches infinity , G (V) is a consistent estimate of the parameter
vector 8, of the original system shown by Eq. (1) or (5) if Om(N Yisa consxstent'estimate of
the parameter vector 8, of the augmented system- (22) or (26)

In the view of Proposition 1 it can be seen that it is necessory to prove that 5@(N ) con-
verges to \00 For this the following theorem can be proved.

Theorem 1 When the size of sampled data tends to infinity , the estimated parameter vector
éBﬂS(N ) obtained from the algorithms is an asymptotically consistent estimate of 8, namely
| Ex_}oémuv) =, w.p.l ' (55)
where “w. p. 1” dentoes “with probability one”

Proof It follows from the properties of quasi-stationary sequences given in [ 5] that

I o o qm_rm o 01T _g 1 (56)
m == X == . W. P .
ewen LHTR~~‘<N>R ) T lmirgrs Hul P
Thus it can be concluded by using (41) and (44) that
- 0 e , .
DT l— ; ] |
lim [ 1 - = [I:,,:‘J , w.p.l ' 57

woveo B =9 | tim 6 ()|

Taking the limits on both sides of (44) and then substituting (56) and (57) into the limits
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gives
limAfgms(N) = RiRg, + BB, wopl  (58)
Therefore ) '}’im Omas(N) = by, w.p.1 o M (59)

Thus the theorem is proved.

T able 1 Smmlatmn results of the example 1

200 py - az,, b bz, e 19? z 17% :

true ~1.5 0.7 L0 05 20 —1.0
esimate  —1.485  0.686  0.993  0.488 1.987 —0.983

5 Simulation Example ,

S To verify the preceding conclusiOns, a simulation example is presented.‘
Example Consider a system represented by Eq. (1)~ (4) » Where the nommal part is k

1. 0™ + 0. 5¢~2

G(qﬂ 6%) = T= 15771 0. 70 (60),
and the unmodeled dynamics is described by ' L
Gylg™1) = 2, Oq-l — 1 0g—2. | “ 6D
’I‘he correlated dlsturbance v, i8 sitnulated by v . |
v, = e, — 1.0esq -+ 0 29,, P , N (62)

u is taken as a pseuderandom binary signal (PRBS) of an unit magnitude and e, is: white
noise with zero mean. ’

In this example the filter is designed as

F(g) = 1.0 — 1.4¢7 + 0. 48¢~2 : (63)

The simulation results are listed in Table 1. o |
6 Conclusion

This paper deals with the problem of unbiased identification of transfer function with the un-
modeled dynamics described by FIR, and thus extends our results [2~47. It is shown that the
idea of BELS method can also be exploited to get satisfactory identification results‘even when
there is not much more priori iﬁformation on the noise and the unmodeled dynamics. This kind of
identification method is expected to be a feasible and effective mean to improve the identification

accuracy.
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