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On the Evaluation of Stochastic Controllers }forr Systems
with Variance Constraints’
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Abstract: The performance requirements of many engineering control problems are naturally described
in terms of variance values of system inputs', outputs and states. The primary purpose of this papet is to
deal with the problem of evaluating the stochastic controllers for systéms with variance constraints. The
algorithm to identify the variances of system inputs and ot.itputs is presented. This algorithm may be used
10 evaluate that if the stochastic controllers can make the feedback system meet the prespecified variance
constraints, so that the controllers can be appropriately adjusted prior to its implementation on practical
systems and the design goal can be achieved.
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1 Introduction
. Performance requirements which are directly expressed as upper bounds on the variances of
the system outputs and inputs are common in various engineering systems. For example, in large
. space structurest %3  the vibration level at multiple points on the structure must be kept within
“specified bound. This performance requirement can be exptessed as the variance constraints on

o ‘,,”the’ system inputs and outputs. In the problem of fire controll?), the main performance indices

or example, stability, cutting frequency and impulse response characteristics, etc. ) of the laser
unication system situated on the motional carrier can all be expressed as the upper bounds
~variances of system outputs. The energy constraint requirement upon the actuarors can be

sformed to the variance contraints of system inputs. Similar examples are quite common in

_tochastls control problems. Hence, a multiobjective design task may be formulated as
fOiiﬂWs. Given the variance constraints of system inputs and outputs, it is essential to design the
o nt’l‘s‘)Ilafcsﬁsuch that the inputs and outputs of the feedback system satisfy the prespecified index
uirement. The prespecified variance constraint, of course, should not be less: than the

M variance value which is obtained by using the traditional LQG theory.
A design

80 method called constrained linear quadratic gaussian (CLQG) control, which
attempt
Dts 10 solve the above problem by using a penalty function method, has been presented in

3l In
) this approach the controller is designed to minimize a weighted sum

’
v=>aBGH + Zru(uf) (1.1
i=1
—
* This paper wag
M SUPported by a grant from the Academy Science and Technology Foundation for Ph. D. of China.

anusc
Tipt receiveq Jun. 7, 1993, revised Mar. 17, 1994.



12 CONTROL THEORY AND APPLICATIONS Vol. 12

of the state and input variances. However, minimizing a scalar sum does not ensure that the
multiple variance requirements will be satisfied. It is important but difficult to choose the
acceptable weights in the CLQG methodology'’?, because the choice of these weights may directly
influence the synthesis of controllers and the variance values of inputs and outputs of the feedback
system. In this case, it is very important to evaluate the controller prior to its implementation.
Before using the controller to practical systems, we may calculate the variance values of inputs
and outputs of the feedback system and evaluate this controller if it can make the feedback system
satisfy the prespecified porformance requirement. If not, we can adjust the weights again. Here,
the importance of performance evaluation ©of the stochastic controllers is clear.

To solve the above stochastic control problem with variance conétraints, a more straightfor-
ward methodology called covariance control (CC) theory has been provided in[4,5]. The main
idea of this theory is to assign the steady-state covariance matrix of system states to the desired
value. The freedom contained in the design may be exploifed to achieve the variance constraints
of system inputs and outputs. The solution of the covariance assignment problem which subjects
to state estimation feedback has been presented in[ 4,57]. It should be pointed out that, in order to
ensure the existence of the controller stabilizing the feedback system, a fictitious “noise” ¢DSDT is
added to the Lyapunov equation in which the steady—state covarjance is satisfied. However, the
synthesis of controllers depends directly on the choice of this fictitious“noise” and the solution
provided by[4,5] is approximate sequentially. Thus, the controllers must not make the feedback
system strictly meet thedesired variance contraints. Owing to the above reasons, the performance
evaluation of controllers is also xmportant in the covariance control theory.

2 Problem Statement
Consider the stationary vector process r generated by
2+ 1) = Az(k) + Bu(k) + Dw(k), 2. 1)
y(B) = Mz(k) + v(k). (2.2)
Here y is the measure output vector ; 32 € R, g 6 R"y »% € R, w € R,» € R"%,w and » are the
Zero mean wh1te noise processes thh cov' nances W > 0 and V->> 0, respectively. w(k) and

2(0); v(k) and z(0) are supposed to b ncorrelated respectlvely The pairs (4, B) 4,0y,

(A, M) are assumed to be stabilizable, controllable, and detectable. No loss of generality,, we
suppose that w and v is uncorrelated.

The input = is some state estimate feedback law

u(k) = Gz (k) ' (2.3)
and the state estimate vector z is generated b;/ ‘ '
a(k+ 1) = 42(k) + Buk) + K[y(k) — Mz (k)] 2. 4)
where the steady-state Kalman filter gain K is the solution of
‘ K = APM'[V 4+ MPMT]"!, (2.5)

P = (4— KM)PA™ + DWD", (2.6)

and P is the covariance of the estimation error, i.e. ,
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No. 1 Oon

P = E[(z(&) — 2(k)) (@(k) — 2 (k)]

his end the problem of evaluating controllers with variance constraints may be
To this ’

: d as follows. Given the controllers obtained via CLQG or CC theory, prior to their
) mulate

for sation on practical systems, identify the feedback outputs {y(k)} and the feedback
implemeﬂ
'inputs {ﬂ(k)} »
inputs. After all,
and adjust the controllers appropriately.

and give the algorithm to obtain the variance values of the feedback outputs and

we can evaluate if the controllers satisfy the prespecified variance constraints

3 Main Results and Derivations
2.1 Identification of Feedback Outputs
Let a(k) = z(k) — 2(k), then P = E(a(B)a(k)").
Using (2. 2), we have
y(B) = Mz (k) + v(k)
=M@k + z(k)) + »(k)
= Mz(k) + b(k).

b(k) = Ma(k) + v(k).
From (2 4), it is obtained that
: 24+ 1) = Az(k) + Bu(k) + K[yk) — Mz(k)]

| = (4 + B&)z(k) + Kb(k). , (3.1)
i}may be 'éxpressed as ' ’

o [l — A+ B®z"TeGk + 1) = Kb(h) (3.2)

2k + 1) = [I — (4 + B@)z"'"]"'Kb(k) (3.29)

the z-transform operator and in this context z~! serves as the one step backward shift

: ,‘I@?‘Nthe feedback output variable is given by _
y(&) = M[I — (A + Bz "] Kbk — 1) + b(k). ‘ (3.3)

It i _noted that the inverse matrix appears in (3.3) and brings great d1fflculty in the

tatzen Using the approach presented in [6], we may convert this inverse matrix to the
@rm which is easy to compute.
' 'Q?fmmg the following matrix polynomial
’ H(z) = Hy + Hiz7' 4+ Hyz"t oot Haz", Hy=1
where the Coefflments H; are given by
Wh [M(A+ BO"™' [M(A+ BG)" ™!
; Hi M(A+ BGY'™?| | M(4+ BO)?

ey

L pr a Y
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[M(A -+ BG)*!
lM(A -+ BG)'?
i' (M A+ ey ]t (3. 4a)
L M . g,
and the parameter » is the smallest integer to satisfy
(M4 -+ BG)“*‘] " M4+ BG)"
M(A + BG)Y -2 M4 4 Be)—!
rank | . = rank . (3. 4
| ”

Premultiplying H (z) to both sides of (3.3), we have

R=1 i

LH Zy(k) = ZHZ—»WC) + > ZH M (A + B9z Kbk — 1)

i=0 j==
or

2 Hz"y(k) = LZHZ—* - 2 ZH M(A + BGY Kz b (k). (3.5)

i=0 j=
Here, the equation (3. 5) can be directly gotten according to the approach provided by reference

(61

Remark In the equation (3.5), the matrices Hi,A,B,G; M are known. Using the
assumptions, it is not difficult to obtain the conclusion that the variance of b(k) is MPMT -+ V.
Thus, we can easily obtain the variance of the feedback output y(&).
V 3.2 Identification of Feedback Inputs
. Form (3. 2), we have

u(k) = Gz (k)
= Gl — (4 + Bz ] Kb (k — . (3.6)

By a similar approach to the section (3. 1), we can remove the inverse matrix in (3. 6) and

obtain

ZH 2 (k) = 2 211 G(A + BGY Kz 1p (k). 3.7

i=0 j=
The coefficients H, are given as below .

G(4 -+ Ba)*! G(A4 - B@)*— 4T -1
{r '] G4+ BGY'~?| |G(A + Be)*?
{ H3 .
i R
HY .
[L G J G ) J
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[G(4 + BG)!
(4 + Be)~?

(¢4 + Ba)' " (3.8)
L G _
and n chosen such that n is the smallest integer to satisfy
(G(A4 4 BGY "] "G4+ B
G(A + BG)*? G4 + BG)!
rank. L = rank o . (3.9
L G _ L G _

From the equation (3. 7), the variance of feedback inputs can be gotten directly.
4 The Algorithm

In this section the algorithm to evaluate the stochastic controllers with the variance
constraints is provided. It is assumed that the variance constraints of the outputs and inputs are
given and the feedback controllers are obtained via CLQG theory or CC theory. We want to
evaluate these controllers prior to its implementation.

Step 1 Solve the Kalman filter equation (2.5), (2.6). Obtain the steady-state Kalman
filter gain K, the covariance P of the estimation error and the variance MPM™ -+ V of b(k).

Step 2 When seeking the variance of the feedback outputs, deterinine the smallest integer n

: o to satisfy (3. 4) and write the matrix polynomial H(z). The case of seekmg the variance of the

feedback inputs is similar.

.Step 3  From equations (3.5) and (3. 7), obtain the variances of feedback system outputs

puts. |

'tep 4 Vertify that if the variances of feedback-system outputs and inputs satisfy the
fied pérformance requirements. If not, adjust the weights in the case of usmg CLQG

ds and adjust the small parameter ¢ in the case of using CC methods.

fe ‘5 Obtain the feedback controllers again and repeat the above steps unt11 the variances

of &ﬁdback outputs and inputs meet prespecified variance contramts strictly.

Illustrauve Example

I“ thlS section a numerical example is provided to demonstrate the d1rectness and
yﬁfiﬁﬂtl?en’ess of the present approach.

Consider the state-space model form ;
1 0.5 I'O. 4 '
2k + 1) = [ ]x(k) + ]U(k) + w®), (5. 1a)
0 1 Lo.2
¥k = [1 0Je(k) + »(k) . (5. 2b)

with
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W= f,, V=1
It is assumed that, from the CLQG theory or CC theory, the feedback controllers are
1 ’

obtained as follows:

o =[—25 —1.25], G=[—2.5 1].
Now our object is to verity the above controllers if they can make the feedBack system

satisfy the following steady-state output variance constraint,
E(y(k))?* < 4.168
and the case of computing the feedback input variance is similar. By solving the Kalman filter
equation (2.5), (2.6), we can easily get that
] 1 3 2
K= , P= s BQU))? = MPM™ + V = 4.
L0.5 2 4

For the controller G,it is found that

0
A+BG=|: :] n=1, H; =0
l—o05 0.750 L
where the parameter n is the smallest integer to satisfy (3. 4b), and the coefficients H; are given

by (3. 4a).
Therefore, the feedback output is given as below
y(B) = b(k), E(@®)* = E@G())? = 4.

Similarly, for the controller G,,it is easy to obtain that

0 0.9
2 == s n == 4, . La
A+ BG 05 1.2 2 (5. 2a)
H, 0 0.977%*r0 0.97[— 0.45 — 1.2
_ | - . (5. 2b)
Hyd 1 0 10 1. 08 0.45 J

Substituting (5. 2a) , (5. 2b) into (3. 5) yields
(1 — 1227 + 0. 45272y (B) = (1 — 0. 227" — 0. 32-2)b(k)
and '
E(y(k))? = 16.

It is clear that, from the above results, the controller G, meets the output variancé constraint
while the controller G, does not.
6 Conclusions

This paper focuses on the problem of evaluating a class of stochastic controllers with

variance constraints. The identification algorithm of feedback system outputs and inputs is given.

This algorithm can be directly used to evaluate that if the controllers obtained by different
methods are appropriate. Hence, we can adjust the controllers prior to their implementation. The

results of this paper can be applied in the design of practical control system.
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