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Abstract: The set-membership identification of systems with parametric and nonparametric uncer-
tainty is studied. in this paper. The bias induced by the additive noise is eliminated by using the Bias-Elimi-
nated Least Squares Methnd proposed in L5]. A prefilter is connected to the input terminal of the system,
so that some zeros are inserted to the system. By using the information obtained from these known zeros
the bias induced by the additive noise is eliminated.
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1 Introduction

In general, it is diffxcult to model the disturbance in a sysiem exactly. A realistic approach
is to assume that the dlsfurbance is unknown but bounded (UBB). Based on this assumption, the
method of set-membership identification is proposed in [ 1] and further developed to deal with i-
dentification for robust control in [2] and [3].- Taking the unmodeled dynamics to be UBB,
these methods can get a model set whose elements are consistent with the observed data. But in
these methods, the measurement noise and the unmodeled dynamics are both- considered to be
UBB disturbances.  As a result, only a conservative estimate of the model set can be reached. The
‘recent results of set-membership identification can hardly be said to te satisfactory.

o dtis not1ceable that the measuremem nmse, in contrast with the unmodeled dynamics ,1s a
kind of dlsturbance thh stiong statlsuc property. In principle its effect can be eliminated or at
least reduced. In view of thlS this paper is to study the problem of how to extract dnd eliminate
the bias induced by measurement noise in the estimate. In [4] and LSJ a bias- clxmmated least
squares method (BELS) was proposed and has been shown to be effective in dealing with the
noise with the UBB property. This paper will extend the idea of [4] and L5] to the elimination of _
the noise-induced bias in the setmembership estimate. Here the measurement noise and unmodeled
dynamics are treated separately. Then the effect of noisé is eliminated so that a less conservative
model set can be obtained. To this'end, a designed digital filter is inserted artificially into the i-

dentified system at the input terminal so that the resulting augmented system has some known ze-.
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sysiern which can be modeled as follows;
a s}

B 7
yo = Z_%(Z_Alirl + 47 1(([14-‘)14,({1,_1)\)% + e, R ey
_wﬁere )
47 A D =14 ag " +... +aq™, 2)
BC) = by + big™ bt A+ bug" s
Bmd q "' is the unit-delay operator. u,y: and v; denote the System input, output and the UBB dis-

. '/tuf‘ianae at the output terminal respectively. It is also assumed that both u; and 7 have finite
~ power, that is, 7,<(0o and P00,

The s system W (g7 4(g™") denotes the multiplicative nonparamemc uncertainty , which is

cterized by an uncertain but unity-bounded stable transfer function 4(g™"), i.e. || 4| ==
nd by a known stable transfer funtion W(g™"). \ ‘

'VA'sf will ‘be shown, the result of identification does not depend on the model of noisé Dy
'ii,éi‘_efo,re the system (1) can te formulated as in [6] . ' ' o

' A = B+ AlOW Q) + vy )
v, =A(g" ), is also unknown but bounded, and uncorrelated with the input.

oduce the parameter vector 67 = [m Jlzse v 5lysDysDise s e 3bu s the model set of the sys-
n be described by ‘ ' k ' "

Ay —Bu—v, . o o
= {6, | J-—EW”—Juwgl}. , G

Thxs equation gives the constraints between the nominal mode! and the unmodeled dynamics.
! "fyv"any, if the center of the ®* stands for the nominal model, then the bound of unmod-
mICS can be specified by the redius of ®*. Moreover, if there is no noise, the definition
mit parameter set given by (5) is consistent with that in [2] and [3]. But, ‘in the pres-

ené&
=hce o ,1se, it gives a much more accurate estimate than that in [ 2] and [3]. That is the rea-

. ,san why Eq. (5) is adopted here,

The ) ‘
fie estimation of the set ®* in the case with v,=0 has been thoroughly studied in [2] and

137 1 . .
L3 n wis Paper the estimation of the set ®* in the presence of a colored noise will be dis-
Cussed, _

The s N
smple average of a quasi-stationary sequence {z(#)} is defined as
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e(a(D) = %—Zm) (6
The truncated [, norm is taken as
k
lzle= (a2 )
=1

3 Estimating the Model Set ®* in the Presence of Noise

The following theorem gives the result of estimating the ®* based on the observed data se-
quence Z¥.

Theorem 1 For system (4), we have

) 6y > 0. w.p.1as N — cc, 8)

iy & C 0.. 9
where

Oy = (0: | ATy — Bl Du— o[y < | W DB Dull v}, (10)

0. = lim 6. (1D

The proof of this theorem is similar to the proof given in [ 2] and is omitted here.

This theorem proposes an approach to estimate @* in the presence of noise. It can be poinfed
out that the estimate of ®* by this theorem is less conservative than that in [2] and [3]. In fact,
in [2] and [3] the estimate of @* is Oy={0; || Ay—Bu || v<< || WBu || v+ || v || v}, it is obvi-
ous that Oy C 6. ’ |

Define a vector @ whose elements are the following sequences;

o=[af, ot ", ' 12)

O,=[yk—1),y(k—2),. .. ,yk—n) ], 13
0, = [uk) ,u(k — 1) ,utk = 2) .o su(k — m) ] Qas

The results given in the following theorem present a convenient form for computing Gy.
Theorem 2 For system (4), we have

i) @y can be expressed in the quadratic form

Oy = {0:0"I'x0 — 2836 + ay < 0}, e (15)
where ) : S
ay = ex(F () — ey (¥®) ER, : ; (16)
By = ex(Dy) — ey(Pv) € R, o B , an
Iy = gy (D7) — [0 0 | 1. ' (18)
0 ex((W)(WD)™) ‘

ii) Provided I'y' exists, then - ;
Oy = {0:(0 — 0TIV — By) < Vy}, a9
where

Oy = I'i ' By, i ¢{))
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No. 1
Vy = BYI5' By — ay. : ! n
proof The system (4) can be rearranged as follows; ,
ACg Dy — Blg Du — o = A DB DWW Du. @22
Taking autocorrelation of the both sides at =0, we get
ey ((Ay — Bu — v)*) = ey ((ABWu)?). (23)

Rewriting (22) in autoregressive form gives

0
ey ((y — 06 — 2)?) = 8.\’((AHT[ , :l)z)- 24
Wo,d

%

Now take the supremum of the right-hand side to obtain the set Oy,

: 0
Oy = {O:ex((y — D0 — )*) < sup (e,vv(A@T'- ])2)}
B Y e LW

u

0
= {9:8.\;((21 — 0 — v)?) < 8.\'((9’1![ :])2)} (25)
W, EREE

By the definition (6), the quadratic form of @y follows immediately. This proves part i) of
the theorem. When I’y ' exists, part ii) is the alternative form of part i).

Remark 1 The formula (20) in Theorem 2 indicates that the nominal model can be esti-
mated by the traditional least-squares method. For this nominal deel Eq.(21) specifies the
'bound of the unmodeled dynamics and the noise.

Remark 2 Egs. (16),(17),(20) and (21) reveal that the quantities ey (®v) and ey (»?)
ére the noise-induced biases in the estimates of the nominal model parameters and the bound in-
duced by the unmodeled dynamics. They are unknown and need to be determined.

" Remark 3 If there is no unmodeled dynamics, we can take W (g™ ')= 0. In this case Theo-

. - ;,ém 2 gives the result of traditional least-squares identification. According to the condition of per-

o 'Sistient excitation from Eq. (18) we can see that I'yv>>0. In the case with W (¢ ")+ 1, Eq.

- (18) also shows that I'y>0 if the system is persistently excitated. It is evident that when I'y>
0, &y forms an ellipsoid in R**"*1,
. 4 Bias-Eliminated Set-Membership Identification
. In above sections we have proposed a set-membership identification method in the form of
: Theotem 2. But ey (»?) and ey (®v) remain to be determined. In this section \A‘/e will discuss the
Problem of calculating these unkowns. It is known from [47] that the bias induced by noise can be
calculated if some zeros of the identified system are known. A prefilter is designed and inserted to
the input terminal so as to add some known zeros to the system. The bias caused by the measure-
ment noise will be determined in the same way as in [4].

A digital filter F~!(g™') is connected to the system at the input terminal, where F(¢™!) is

defined ag

FD) =1+ fig7' 4.0 + fig ™ (26)
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The digital filter F~ (g~ ") is designed to be stable, namely, the polynominal F* (¢)=q¢'F(g™ ")
has all its zeros located strictly inside the unit disc.

The augmented system thus obtained is expressed by the model

Al Dy = Bl A + 4@ HW Q@™ Nu + os, @n
where b
B(g™")=F(¢" "B ")
=Dy+big Doy P o b T, (28)
1
Ztk:m?tk. (29)

Performing the same procedures as in the proof of Theorem 2, we can get the set-member-

ship identification results of the augmented system (27) as follows;

Ay = {0, 0 — Oy )Ty (0 — 0y) < V\} » (30)

where

@

J— 7 7 7 7 T
—{:al,az,. o ,(l,.;b(),bl,bz,- §a ,b,‘+,,¢] 5

D =[—yk—1) .. ,—y—n);u(k) ... ,u(b—m—n)]"

=[&; ;0. ], (32)
_ . {’0 0 : ,
Ty=gey(PP") — _ _ ], BN EED)
LO ey ((WB) (WD) , , , ,
Py=ey(Dy) —ex (@v) =gy (Py)— B |07, 34y
l_l,\':c.\'(yz)_‘a.\' (772), : ) (35>
’ VA\V=[1’?\N'T’.\_’IZ},\'—&_\’ ’ ' (36)
Oy=T5'Pyv=T53'ex (D) —TI5'[£5.]0], 37
R =7, (1) 5700 (2) 5 oo 57 (@) ] , (38)

Among Egs. (34), (35) and (37), there are n~+1 unknowns to be estimated, including
r. (1) (=1, 2500, n) and e(»*) =7, (0). The following subsections give the method to deter-
mine 7,,(¢) (i=1,2,...,n) and ¢(»*)=7r,(0), respectively.
4.1 Estimation of B,,
' o Let 4(i=1,2,...,n) be the zeros of F* (¢g). This implies that the following equations hold
B* G)y=F* (M)B* (&) :
=D AT AT T L A baa=0,  i=1,2,000 50, 39

where - B* (q)=qu(gI—1),
It is obvious that H'9=0, Y 686y, 40

where

[0 e 0 AT e A 1)

. sve B . ese : E 6 Rnx(zu—,‘m—i-l). ) (41) ]
.L() e 0 AR eee 4 1 :

HT =
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gimple !

tjons for calculating By,

wheré

GR,, =

G = HTT’;\_JQ 6 R«xﬂ,

4.2 pstimation of & (v*)

H Oy s

T - [[n I 0] e I{nX(Zn—{-m-{-l)
and [, is an identity matrix of order n. Hence the estimate of R, is given by

R, = (H'T5%) "H'T5'ex (O).

To estimate ey (2) 1. e. 7, (0), let us rewrite the: augmented system (27) as

: . .T0
ay(t — n) — 06 = (}T[ _ ],
) . AW D;

where

@T: ["" J(t)s _'j(t'"“ 1)’-~~ s

g* rl alsa29 R RPN TP

-

- ?/(t —n -t 1)97—‘(’6)3‘

cyu(k—m— n)d,

Like Theotem 2 the set-membership 1dent1f10at1op results of the system (45) will be

N
|

2w
l

0

HTH——»O

4{&@—90ﬁ@+5nsvﬁ,
= oy (By) — ex(B0) = &x(Py) — [Bn ! 0J%,
v=8\'(j)"‘&\<@’)a o '

Vy = By T5'py — oy

3

(‘D?J) - 1’"J [Rw Lol

o)
| e (W) W8T L
R;l = [Tyt’(o) ryl (1) 3000 .rw,(n — 1)]\

e new parameter space described by (47) , it is also Vahd that

V()e()\

mathematical manipulations on Eq. (37) give the following set of n linear algebraic equa-

42>

U3

(445

(45)

(46)

- (47)

(48)

49

&1

© (51

fore, hke the result given by Eq. (44), the value of R,. is obtained as
Ry= (H'T3'Q)~ ‘HTI’\‘ e (Dy (@ — n))a,.
& n 56) is also unknown. However, Eq. (44) gives the value of Ty (z) 1= 1 2 ge e

S"“u"mg one of r,,(i) into (56) the values of a, and 7,,(0) can be obtained.

ues Thec
orem 2 gives a complete set-membership identification method for the system (1).

5 Slmuia‘uon

Su )
: Ppose that the true transfer function is

G(g™) =

B ")
Al

(1 + A DOWE@ )

(52)
- (53)

G0
(55)

(56)

s

?}Qf&r By, and ey (»?) are determined by usmg the known zeros of F* (¢). With these val-



32 CONTROL THEORY AND APPLICATIONS Vol. 12

:ZOH{LLOJLZ+ O‘1§>So+ 100]}‘ 7

The sampling frequency is chosen to be 20x rad/s or 10 Hz. The nominal part is selected as

A7) =1+ ag' and B(g ') = by~ 1. (58)
The weights W (g™ !) is taken as
. 4
W(g™') = 65{20H[ii H b : (59)

and the noise sequence v; is generated by

vy = e, — 1. Oek—i -+ 0. 28k~2’ (60)

whefe e, is a white noise with zero mean and the

variance 1. 0.

The above method is applied to the simulated

[

data with a sample size of 200, 500 and 1000, re-

spectively. The results are depicted in Fig. 1, in ‘§|

which the estimates and the true model set ®* are E

given. It can be seen that the proposed method can i—f)l. ! -

obtain a satisfactory estimate of the model set. Parameter o

8 Conclusion ' ’ Fig | 6, for different N(é==1. 0)

The problem of the set-membership identification for a linear system is studied in this paper.
We show that the method proposed in[ 4 Jand[5 Jcan be used to eliminate the biases and inaccura-
cies in the estimated parameter set induced by the additive noise. In[ 4 Jand[57a bias- ehmmatmg
method for the identification of a linear system with an accurately known structure was present-
ed.- Here, in this paper, we have shown that this method can also be applied to eliminate the bias-
es caused by noise, even if there is unmodeléd dynamics. Since the biases caused by noise can be
eliminated, then the pfoblem of set-membership identification turns to be a problem of a model
fitting, the same as for a deterministic linear system. If we increase the degree of the ﬁominal
part of the system and at the same time weaken the unmodeled dynamics, then the estimated
bound of the parameters set will be reduced, and a more éccurate estimation of the System can be

reached. It is worthy to be noticed that the method presented here needs no priori knowledge of

the noise model.
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