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Abstract; In this papet, a problem of eliminating the impuisive modes by output feedback in descrip-

tor systems is considered. First, we redefine the impulsive controllable subspace Ric, unobservable
“gubspace B of the descriptor systems from a new point of view. Secondly, on the basis
of these subspaces defined above, an interesting and meaningful mathematical identity is

established as follows
dim (Ry)—dim (Rmﬂffu) }—r_ max deg det (sE—A-+BKC). (% )

. KER[mMmX 1]
As a corollar y of (%), a mgmfxcam conclusion, i.e. , there exist p lineatrly mdependent

mpuisive modes which can be ehmmated by an output feedback law if and only if the
system pOSSesses p hnearly mdependent 1mpulslve modes which are comroliable and ob—

servable. It is also shown that the equality ( % ) holds for almost any gam K.
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Introduction

In recent years, there has been considerable interest in descriptor systems of the form
Ex(t) = Az () +Bu(t), (1a)
y{(t)=Cz(t), ‘ (iv)

here B, A are n)Xn real constant matrices with matrix & singular, B and C are n2Xm and {Xn,
spectively. Because of the extensive applications of such systems in areas which include large-
ale systems, singuiarly perturbed systems, circuit theory and economic modelst! ™1, its theory
as been developed rapidly. '

For the structure properties and the impulse behavior of the system (1), many authors have
udied them from various viewpointst~* and got some valuable and significant results. It is
ﬂWorth noticing that these previous work mainly focused on the complete infinite frequency behav-
ior of the system, for instance, the impulse controllability , observability and elimination prob-
'16mS of all impulsive modbs by various feedback applied to the svstem[4~ It ha been
Shswn“‘ 121 that all impulsive modes of the system can be eliminated by almost any constant out-
Qut wedback when the system is both impulse controllable and observable, However, the prob-

kims such as whmh impulsive modes is impulse controllable and Jor observable, calcu‘iatmg ‘the

—
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numbers of the impulsive modes which can be eliminated by various feedback laws have not béen
discussed.

Our goal in this paper is to investigate which impulsive modes is eontrollable and /op Ungy,.
servable and how many impulsive modes can be eliminated by a constant output feedback applie .
to the system.

It is assumed here that the polynomial det (s¥— A4) is not identically zero which guarameé
uniqueness for the solutions of (1).
2 Preliminaries

Let 0(B,A) = {s:det(sE—A)=0}, r=deg det (sB—A), H,= (A—A)~'E and B,= i
—A)~'B with A €6(¥,4), R[mX (] denotes the set of all real m X! matrix.

Let Ry, B, denote eigensubspaces associated with non-zero eigenvalues and zero eigehvalueg
of the mapping E,, respec{ively; Ji,J2 denote the restrictions of the mapping E, to the Subspacé
Ryand Ry, respectively; P(Q) denotes a natural projection along subspace B, (B,) on subspace
Ry (Ry) ;34 =I’B;,,Gg:t?23l; C,sC; denote the restrictions of the mapping € to the subspace g, aﬁd
Ry, respectiveiy. For a real number A € 6(H,A), with the left multiplicétion of (AE—A)-1 fg)
both sides of (1a) and a siutable coordinate transformation, say z==7"(x},24)*, the “7'” denotes a

“¢” denotes transpose of a matrix, thus the system (1) can be de-

linear transformation and the
composed into the following two subsystems , ’
2, () = Ay, () + Bu (1) , : (2a)
@) =C2, (@, -~ (2b)
and A
Apxy (8) ==, (1) + Bou(t) , ' (3a)
y2 (1) =Car: (8), ; (3b)
where 2, &Ry, 2, ER, i+ 9=y, A=A, —J7Y Ay=(AJy—1) "y, Bi=J7 Gy, Bo=(Ad>
—1,)7!Gy,J, is an nilpotent matrix.

Definition 1 An initial state z, (0_) is said to be impulsive controllable if there exists'a

control input »(2) € C4(here ¢g=Ind (4,)) such that =
Imp (2:()) =0, ‘ 4)
where Imp ( % ) denotes the impulse part of ( % ). If Ry denotes the subspace in B, which con-
sists of all the initial states 2, (0_) {hat are impulse conirollable, then we call R3¢ the impuise
controllable subspace of the system (3). .
Definition 2 An initial state 2,(0_) is said to be impulse unobservable if the observation
output y»(¢) =0 with u(#) =0. If Rys denotes the subspace in R, which consists of all the initial .
states 2, (0-) that are impulse unobservable, then we call Ryg the inipulse unobservable subspacyé
and Ry the impulse observable subspace of the system (3), where By denotes the orthogorlf?1

complement of the subspace Ry in R,.
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Simﬂariy, definitions on the impuise controllable subspace, the impulse unobservable sub-

ce and the observable subspace for the system (1) can be made out in a same way, and they
ace &=

e denoted by Biw,Bis and Ry ,respectively.
a ¢—1

Lomma 1 Rue= 2 Tm(AiBy) +Ker (),
n—1

Lemma 2 Rie= 23 1m (BB, +Ker (5) +Im(EIE,) »
g—1

Lemma 3 Roig= ,D!Kel' (C.45),

’ a1}

Lemma 4 Rip= VOIKer(C %) -+Im (B2 E,)

where %7 stands for the Drazin inverse of the matrix Ej.
The proofs of the lemmas mentioned above can be found in [13Jand[14].
3 Main Results
In this section, we are interested in the effects of applying the linear feedback law

u(t) =Ky () +w(®) (5
o the system (1) where K is an m X real constant matrix.
- Although some conditions on eliminating all impulsive modes by feedback (5) have been es-
tablished in [117] and [127], it is still a meaningful task to answer how many linearly independent
impulsive modes of the system can be eliminated by the feedback.
 Theorem 10} Let Ngo be the numbers of controllable and observable impulsive modes

which are linearly independent. Then we have

Neo=dim (Bic) —dim (R Bi). (®)
Theorem 7 dim (Rie) —dim (R Rp) +7r= m[ax deg det (sE—A-+BKC). 7
‘ - KeR[mXI]
Proof It has been shown in [ 4] that a system matrix of the form
sE—A —B ' '
P(s)= > €:))
¢ D

can always be brought by allowed transformations to the form

rsBoo—Aze % * * i — Bac
0 sBw—dw O 0o o0
0 0 sBo—de x| —Boc|s ©®
0 0 0 sBo—Am: O

A S Cw G i D |

‘ Where the » denotes constant matrices, and the subscripts 0,0,C and C denote strongly observ-
~ able, unobservable, strongly controllable, uncontrollable subsystems, respectively.
: Notice that adding or eliminating nondynamic variables does not affect the dynamical order

~ assignment of the system (1). Without loss of generality , we can assume that the system (1) has
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no hondynamic variables. Then, it is not difficult to see that there are two nonsingular Mayy,
. &

M and N such that

['sEgc— Apc * * * 1
v sEzz— Az 0 *
M(sE—A+BKC)N =
0 0 8800 — Aoc = Boc KCoo *
L 0 0 0 sEos— Aoz

Thus we have

max deg det (sH—A-+BKC)= max deg det (8o — Aoc~+ BocKCo¢)
rKeR[mXx1] KER[mX]

s 5 — Apio * ]
-4-deg det 0 shige— Aw * j .

L _ 0 0 sEog— Ao
From Theorem 1 above, it is easy to show that

max  deg det (sBoc— Aos—-BoeKCos)
KeR[mX1]

==dim (Rye) —dim (Rye{) Rus) +deg det (sEoe— Aoc) »
also, .
dim (Rie) =dim (Rue) +7 5
dim (R ) Bro) =dim (Ryc () Beiz) +7.
Finally, from (10)~(14), Theorem 2 follows immediately. The proof is over.
Corollary 1 The system (1) has p linearly independent impulsive modes which can be e—:yi
liminated by a feedback (5) if and only if there exists p linearly independent controilable and ob-
servable impulsive modes in the system.
Remark 7 The conclusion in Corollaryl contains é well-known result, i.e. , all impulsive
modes of the system can be eliminated by the feedback (5) if and only if the system is impulse
controllable and impulse observablel!!:12],
Corollary 2 Let C=17 and B=1 in Theorem 2, respectively. Then we can easily get théf
following formulas k

dim(Re) = max deg det (sB—A-+BEK)-+dim(KerE), (15)

KeR[mX1] ;
dim{(Bp)=n+r— max deg det (sE—A-+KC). (16)
Ke€R[mXI]

Remark 2 The equality (15) implies that the system (1) possessés p linearly independenﬁ
impulsive modes which can be eliminated by a state feedback u(?) =Kz (t) +w(?) if and only if
the system exists p linearly independent impulsive modes which are controllable. If R,,=R", €-
quation (15) is just a condition on impulse controllability of the system (1), which has been first
obtained by Cobb in [77]. Also, from Corollary 2, we can obtain that ,

No=dim (Rye) —dim (Ket) —r, | an
No=n—dim(Bp), (18
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e Nos N, denote the numbers of the linearly independent controllable impulsive modes and
el

able impulsive modes of the system (1), respectively.

£

from Theorem 2 above and the results obtained in [117 and [12], it is very easy to get the

olldwiﬂg result.
rheorem 3 Let Np==dim (Rie) —dim(Ric [ Rp) 7. Then the set F= (K dog det Coli—

+BEKC) <N ¢} is either empty or a hypersurface in R[mX{].

corollary 3 The closed-loop system generates rank (B)Y —dim(Ry) +dim{(Rie (V Bip) —7
mpulsive modes for almost any K& R[mX{].
By the way , it should be pointed out that the equalities (15) and (16) hold for almost any
- eR[mX 1] '
Conclusion
This paper redefines an impulse controllable subspace and an unobservable subspace of the

éSc;iptor system. On the basis of these subspaces, some important and meaningful mathematical

dentities are established. As a direct corollary of one of the identities, a significant conclusion

en in [7]5[81, [11] and [12] are generalized.

References

ﬁosenbrock, H. H. and Pugh, A.C.. Cotributions to a Hierarchical Theory of Systems. Int. J. Control, 1974, 19.845—

567

: :Kokotovic, P.V., O’ Malley, Jr. R. E. and Sannuti,P.. Singular Perturbations and Order Reduétion in Co'mrol‘Theory

. —An Overview. Int. J Control, 1974, 19;845—867

Luenberger, D.G.. Dynamic Equations in Descriptor Form. 1EEE Antomat. Contr. , 1977, AC-22. 312321

; Verghese, 1. G, Levy, B.C. and Kailath,T.. A Generalized State-Space for Singular Systems. IEEE Antomat. Contr,

1981,AC-26, 811831

| Mukundan, R. and Dayawansa. Feedback Control of Singular Systems by Proportinal and Derivative Feedback of the

State. Int.J. of Sys. Sci., 1983, 14,615—632

Cobb,J. D.. Controllability , Observability and Duality in Singular Systems. 1EEE Automat. Contr. , 1984,AC-29. 1076

—1082 k

?] Cobb,J. D. . Feedback and Pole Placement in Descriptor Variable Systems. Int.J. Control, 1986, 33:1135— 1146

8] Armentano, V., A.. The Pencil (s#—4) and Controllability, Observability for Generalized Linear Systems; A Geometric

Approach. SIAM, J. Control and Optimi. , 1986, 24(4); 516638 .

,’ f9] Grimm, J.. Realization and Canonicity for Implicit Systems. SIAM J. of Control and Optimi. , 1988, 26(6),1331—

1347

. [10] Lewis, F.L.. A Tutorial on the Geometric Analysis of Linear Time Invariant Implicit Systems. Automatica, 1992, 28
(1, 119--137

[11] Wang, Y.Y. Shi, S.J. and Zhang, Z.J.. Pole Placement and Compensator Design of Generalized Systems. Sys. &

Contr. Lett. , 1987, 8; 205—209




376 CONTROL THEORY AND APPLICATIONS

VQL 1

—2

[12] Zhang,S.Y.. Pole Placement for Singular Systems. Sys. & Contr. Lett. , 1989, 12, 339—342

[137 wang, D. H. and Xie, X. K.. Impulse Controllability under Deceniralized Information Structure for Singular Syst -
IFAC LSS’ 92 Symposium, Beijing, China, Aug. 23—25, 1992, 1,207—301

[14] wWang, D. H. and Xie, X.K.. Controllable Subspaces and Unobservable Subspaces in Singular Systems. J, COHtro)
Decision, 1993, 8(2).91—94

I XREERE R R P bkihiTh

ERE i
(FRAEKEE ST RO, 110008)  (FEdb kB H22 & -k IH, 110006)

R ETEHAESC14] P4 i kb T 28 8], S T I F e L R
max deg|sE — 4 4 BKC| = dim(R,e) — dim(Rie () Riz) + »
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